Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames

被引:370
作者
Burke, Michael P. [1 ]
Chen, Zheng [1 ]
Ju, Yiguang [1 ]
Dryer, Frederick L. [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
关键词
Laminar flame speed; Markstein length; Burning velocity; Outwardly propagating flame; Cylindrical confinement; Cylindrical chamber; Flow correction; Hydrogen; Syngas; High pressure; BURNING VELOCITIES; MARKSTEIN NUMBERS; DIMETHYL ETHER; SPHERICAL BOMB; KINETIC-MODEL; AIR; MIXTURES; MICROGRAVITY; STABILITY; DILUENTS;
D O I
10.1016/j.combustflame.2009.01.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
The effect of nonspherical (i.e. cylindrical) bomb geometry on the evolution Of Outwardly propagating flames and the determination of laminar flame speeds using the conventional constant-pressure technique is investigated experimentally and theoretically. The cylindrical chamber boundary modifies the propagation rate through the interaction of the wall with the flow induced by thermal expansion across the flame (even with constant pressure), which leads to significant distortion of the flame surface for large flame radii. These departures from the unconfined case, especially the resulting nonzero burned gas velocities, can lead to significant errors in flame speeds calculated using the conventional assumptions, especially for large flame radii. For example, at a flame radius of 0.5 times the wall radius, the flame speed Calculated neglecting confinement: effects can be low by similar to 15% (even with constant pressure). A methodology to estimate the effect of nonzero burned gas velocities on the measured flame speed in cylindrical chambers is presented. Modeling and experiments indicate that the effect of confinement can be neglected for flame radii less than 0.3 times the wall radius while still achieving acceptable accuracy (within 3%). The methodology is applied to correct the flame speed for nonzero burned gas speeds, in order to extend the range of flame radii useful for flame speed measurements. Under the proposed scaling, the burned gas speed can be well approximated as a function of only flame radius for a given chamber geometry - i.e. the correction function need only be determined once for an apparatus and then it can be used for any mixture. Results indicate that the flow correction can be used to extract flame speeds for flame radii tip to 0.5 times the wall radius with somewhat larger, yet still acceptable uncertainties for the cases Studied. Flow-corrected burning velocities are measured for hydrogen and syngas mixtures at atmospheric and elevated pressures. Flow-corrected flame speeds in the small cylindrical chamber used here agree well with previously reported flame speeds from large spherical chambers. Previous papers presenting burning velocities from cylindrical chambers report performing data analysis on flame radii less than 0.5 or 0.6 times the wall radius, where the flame speed calculated neglecting confinement effects may be low by similar to 15 or 20%, respectively. For cylindrical chambers, data analysis should be restricted to flame radii less than 0.3 times the wall radius or a flow correction should be employed to account for the burned gas motions. With regard to the design of future vessels, larger vessels that minimize the flow aberrations for the same flame radius are preferred. Larger vessels maximize the relatively unaffected region of data allowing for a more straightforward approach to interpret the experimental data. (c) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:771 / 779
页数:9
相关论文
共 53 条
[1]   HYDRODYNAMIC AND DIFFUSION EFFECTS ON THE STABILITY OF SPHERICALLY EXPANDING FLAMES [J].
BECHTOLD, JK ;
MATALON, M .
COMBUSTION AND FLAME, 1987, 67 (01) :77-90
[2]   Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa [J].
Bradley, D. ;
Lawes, M. ;
Liu, Kexin ;
Verhelst, S. ;
Woolley, R. .
COMBUSTION AND FLAME, 2007, 149 (1-2) :162-172
[3]   Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: A computational study [J].
Bradley, D ;
Gaskell, PH ;
Gu, XJ .
COMBUSTION AND FLAME, 1996, 104 (1-2) :176-198
[4]   MATHEMATICAL SOLUTIONS FOR EXPLOSIONS IN SPHERICAL VESSELS [J].
BRADLEY, D ;
MITCHESON, A .
COMBUSTION AND FLAME, 1976, 26 (02) :201-217
[5]  
BURKE MR, 2008, AIAA20081049
[6]  
CHEN Z, 2009, COMBUST THE IN PRESS
[7]   Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames [J].
Chen, Zheng ;
Burke, Michael P. ;
Ju, Yiguang .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 :1253-1260
[8]   DYNAMIC BEHAVIOR OF PREMIXED FLAME FRONTS IN LAMINAR AND TURBULENT FLOWS [J].
CLAVIN, P .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 1985, 11 (01) :1-59
[9]   ROBUST LOCALLY WEIGHTED REGRESSION AND SMOOTHING SCATTERPLOTS [J].
CLEVELAND, WS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (368) :829-836
[10]   Burning velocities of dimethyl ether and air [J].
Daly, CA ;
Simmie, JM ;
Würmel, J ;
Djebaïli, N ;
Paillard, C .
COMBUSTION AND FLAME, 2001, 125 (04) :1329-1340