Initial-irregular oblique derivative problems for nonlinear parabolic complex equations of second order with measurable coefficients

被引:5
作者
Wen, GC [1 ]
Zou, BT [1 ]
机构
[1] Peking Univ, Dept Math, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
initial-irregular oblique derivative problems; nonlinear and nondivergence parabolic equations; measurable coefficients;
D O I
10.1016/S0362-546X(98)00258-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, initial-irregular oblique derivative boundary value problems for nonlinear and nondivergence parabolic complex equations of second order in multiply connected domains are discussed, where coefficients of equations are measurable. Firstly, the uniqueness of solutions for the above problems is verified, and then a priori estimates of solutions for the problems are given. Finally, by using the above estimates and the Leray-Schauder theorem, the existence of solutions of the initial-boundary value problems is proved. The results in this paper are generalizations of corresponding theorems in [1, 5-7].
引用
收藏
页码:937 / 953
页数:17
相关论文
共 7 条
  • [1] Ladyzhenskaya O., 1968, LINEAR QUASILINEAR E, DOI DOI 10.1090/MMONO/023
  • [2] Nazarov A.I, 1993, J SOVIET MATH, V64, P1247, DOI [10.1007/BF01098017, DOI 10.1007/BF01098017]
  • [3] WEN G, 1993, J YANTAI U NATUR SCI, V1, P1
  • [4] WEN GC, 1994, PITMAN RES, V359, P334
  • [5] WEN GC, 1990, BOUNDARY VALUE PROBL
  • [6] 闻国椿, 1995, [北京大学学报. 自然科学版, Acta Scientiarum Naturalium Universitatis Pekinensis], V31, P511
  • [7] [No title captured]