Analytical proofs of classical inequalities between Spearman's ρ and Kendall's τ

被引:12
作者
Genest, Christian [2 ]
Neslehova, Johanna [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
[2] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
关键词
Bounds; Jensen's inequality; Kendall's tau; Spearman's rho;
D O I
10.1016/j.jspi.2009.05.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Short analytical proofs are given for classical inequalities due to Daniels [1950. Rank correlation and population models. J. Roy. Statist. Soc. Ser. B 12, 171-181; 1951. Note on Durbin and Stuart's formula for E(r(s)). J. Roy. Statist. Soc. Ser. B 13, 310] and Durbin and Stuart [1951. Inversions and rank correlation coefficients. J. Roy. Statist. Soc. Ser. B 13, 303-309] relating Spearman's rho and Kendall's tau. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3795 / 3798
页数:4
相关论文
共 7 条
[1]  
[Anonymous], 1993, J. Nonparametr. Stat, DOI DOI 10.1080/10485259308832551
[2]  
DANIELS HE, 1950, J ROY STAT SOC B, V12, P171
[3]  
DANIELS HE, 1951, J ROY STAT SOC B, V13, P310
[4]  
DURBIN J, 1951, J ROY STAT SOC B, V13, P303
[5]   On the relationship between Spearman's rho and Kendall's tau for pairs of continuous random variables [J].
Fredricks, Gregory A. ;
Nelsen, Roger B. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (07) :2143-2150
[6]   ORDINAL MEASURES OF ASSOCIATION [J].
KRUSKAL, WH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1958, 53 (284) :814-861
[7]  
Nelson R.B., 2006, An introduction to copulas