The surface chemistry of Au colloids and their interactions with functional amino acids

被引:409
作者
Zhong, ZY
Patskovskyy, S
Bouvrette, P
Luong, JHT
Gedanken, A
机构
[1] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada
[2] Ecole Polytech, Dept Genie Phys, Montreal, PQ H3C 3A7, Canada
[3] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
关键词
D O I
10.1021/jp037056a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The work reported here describes interactions between nanoscale Au colloids and two main types of organic functional groups, viz., alkanethiols and amino acids. The surface chemistry of particulate Au is dominated by electrodynamic factors related to its (negative) surface charge. Generalized multiparticle Mie calculations were used to model the optical absorption characteristics of Au particles, existing either singly or in varying degrees of aggregation. Experiments with standard (monodisperse) Au colloids confirm the theoretical prediction of a new peak appearing at longer wavelength that intensifies and shifts further from the original peak with increasing particle size, increasing aggregate size, or shorter interparticle spacing. Control of aggregation degree in alkanethiols is achieved by judicious selection of terminal group composition (single- or double-ended), alkyl chain length, and the presence of pH sensitive groups such as carboxylates. In amino acids, the reactivity of the alpha-amine (adjacent to -COOH) is found to be pH-dependent. Linking via the alpha-amine is activated at low pH but suppressed at intermediate and high pH due to electrostatic repulsive forces between the Au surface and the charged carboxylate group or even the (formally neutral) polar carbonyl group in amides. However, dibasic amino acids can still be used to cross-link Au colloids at high pH. The pH insensitive (remote) amine binds amino acids to each particle, leaving protruding pairs of alpha-amines that can be bridged by a symmetrical linker molecule like glutaraldehyde (via its electrophilic centers). This offers a new way to organize Au nanoparticles into extended architectures and functional materials over a wide range of pH. The potential of Au colloids to recognize and determine dibasic amino acids based on optical absorption changes is briefly assessed. A higher detection limit for cysteine (1.2,mug/mL) was found for larger (40 nm) Au particles.
引用
收藏
页码:4046 / 4052
页数:7
相关论文
共 38 条
[1]   SCATTERING OF ELECTROMAGNETIC-WAVES BY ARBITRARILY SHAPED DIELECTRIC BODIES [J].
BARBER, P ;
YEH, C .
APPLIED OPTICS, 1975, 14 (12) :2864-2872
[2]   Intra- and intermonolayer hydrogen bonding in amide-functionalized alkanethiol self-assembled monolayers on gold nanoparticles [J].
Boal, AK ;
Rotello, VM .
LANGMUIR, 2000, 16 (24) :9527-9532
[3]   Chemical and electrochemical Ag deposition onto preformed Au colloid monolayers: Approaches to uniformly-sized surface features with Ag-like optical properties [J].
Bright, RM ;
Walter, DG ;
Musick, MD ;
Jackson, MA ;
Allison, KJ ;
Natan, MJ .
LANGMUIR, 1996, 12 (03) :810-817
[4]   NOVEL GOLD-DITHIOL NANO-NETWORKS WITH NONMETALLIC ELECTRONIC-PROPERTIES [J].
BRUST, M ;
BETHELL, D ;
SCHIFFRIN, DJ ;
KIELY, CJ .
ADVANCED MATERIALS, 1995, 7 (09) :795-&
[5]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[7]   Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J].
Elghanian, R ;
Storhoff, JJ ;
Mucic, RC ;
Letsinger, RL ;
Mirkin, CA .
SCIENCE, 1997, 277 (5329) :1078-1081
[8]   SELF-ASSEMBLED METAL COLLOID MONOLAYERS - AN APPROACH TO SERS SUBSTRATES [J].
FREEMAN, RG ;
GRABAR, KC ;
ALLISON, KJ ;
BRIGHT, RM ;
DAVIS, JA ;
GUTHRIE, AP ;
HOMMER, MB ;
JACKSON, MA ;
SMITH, PC ;
WALTER, DG ;
NATAN, MJ .
SCIENCE, 1995, 267 (5204) :1629-1632
[9]   Kinetic control of interparticle spacing in Au colloid-based surfaces: Rational nanometer-scale architecture [J].
Grabar, KC ;
Smith, PC ;
Musick, MD ;
Davis, JA ;
Walter, DG ;
Jackson, MA ;
Guthrie, AP ;
Natan, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (05) :1148-1153
[10]  
GRABAR KC, 1996, LANGMUIR, V6, P1519