Aspects of the mechanics of lobed liposomes

被引:16
作者
Pamplona, DC [1 ]
Calladine, CR [1 ]
机构
[1] UNIV CAMBRIDGE, DEPT ENGN, CAMBRIDGE CB2 1PZ, ENGLAND
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 1996年 / 118卷 / 04期
关键词
D O I
10.1115/1.2796034
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Hotani, has studied, by means of dark-field light microscopy,morphological transformations which unilamellar liposomes undergo when their interior volume decreases steadily with time as a consequence of osmosis. In a previous paper, we made a theoretical study of the initial buckling of an originally spherical vesicle into the observed oblate spheroidal shape; and we argued that some in-plane shear elastic stiffness is required - in addition to the well-known flexural stiffness of the lipid bilayer - in order to explain the observed phenomena. In the present paper, we consider a later stage in the chain of morphological transitions observed by Hotani, when a series of cudgel-shaped lobes have sprung out of a previously axisymmetric, biconcave-shaped vesicle. Specifically, we compare the observed shapes of such lobes with half of a series of ''peanut''-shaped vesicles that are an equilibrium conformation of an initially spherical liposome under reduced internal volume. We find that the shapes do not match well. On the other hand, the observed lobe forms do match satisfactorily portions of ''undulating tube'' shapes which evolve from a hypothetical cylindrical vesicle, according to some simple calculations. In view of this agreement, we are led to propose that the formation of cudgel-shaped lobes requires some sliding of one lipid monolayer over another. This conflicts, of course, with the Love-Kirchhoff hypothesis which is normally invoked at the outset of analyses of lipid vesicles by means of classical thin-shell theory; but it is in accord with previous suggestions in the context of more obviously severe distortion of the lipid bilayer.
引用
收藏
页码:482 / 488
页数:7
相关论文
共 18 条
[1]  
Alberts B., 1983, MOL BIOL CELL
[2]   NEGATIVE STAINING OF PHOSPHOLIPIDS + THEIR STRUCTURAL MODIFICATION BY-SURFACE ACTIVE AGENTS AS OBSERVED IN ELECTRON MICROSCOPE [J].
BANGHAM, AD ;
HORNE, RW .
JOURNAL OF MOLECULAR BIOLOGY, 1964, 8 (05) :660-&
[3]  
BANGHAM AD, 1975, CELL MEMBRANES BIOCH, P24
[4]  
BERG HC, 1995, BIOPHYS J, V68, pS163
[5]   DETERMINATION OF BILAYER-MEMBRANE BENDING STIFFNESS BY TETHER FORMATION FROM GIANT, THIN-WALLED VESICLES [J].
BO, L ;
WAUGH, RE .
BIOPHYSICAL JOURNAL, 1989, 55 (03) :509-517
[6]  
Calladine C.R., 1983, Theory of Shell Structures
[8]   RED BLOOD-CELL SHAPES AS EXPLAINED ON BASIS OF CURVATURE ELASTICITY [J].
DEULING, HJ ;
HELFRICH, W .
BIOPHYSICAL JOURNAL, 1976, 16 (08) :861-868
[9]   MOLECULAR MAPS OF RED-CELL DEFORMATION - HIDDEN ELASTICITY AND IN-SITU CONNECTIVITY [J].
DISCHER, DE ;
MOHANDAS, N ;
EVANS, EA .
SCIENCE, 1994, 266 (5187) :1032-1035
[10]   BENDING RESISTANCE AND CHEMICALLY-INDUCED MOMENTS IN MEMBRANE BILAYERS [J].
EVANS, EA .
BIOPHYSICAL JOURNAL, 1974, 14 (12) :923-931