Coincidence Bell inequality for three three-dimensional systems -: art. no. 250404

被引:39
作者
Acín, A
Chen, JL
Gisin, N
Kaszlikowski, D
Kwek, LC
Oh, CH
Zukowski, M
机构
[1] Inst Ciencies Foton, Barcelona 08034, Spain
[2] Univ Geneva, GAP Opt, CH-1211 Geneva 4, Switzerland
[3] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
[4] Natl Univ Singapore, Dept Phys, Singapore 119260, Singapore
[5] Univ Gdansk, Inst Theoret Phys & Astrophys, PL-80952 Gdansk, Poland
[6] Nanyang Technol Univ, Natl Inst Educ, Singapore 639798, Singapore
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.92.250404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a Bell inequality for coincidence probabilities on a three three-dimensional (qutrit) system. We show that this inequality is violated when each observer measures two noncommuting observables, defined by the so-called unbiased six-port beam splitter, on a maximally entangled state of two qutrits. The strength of the violation agrees with the numerical results presented by Kaszlikowski et al. , quant-ph/0202019. It is proven that the inequality defines facets of the polytope of local variable models.
引用
收藏
页码:250404 / 1
页数:4
相关论文
共 25 条
[1]   Quantum nonlocality in two three-level systems -: art. no. 052325 [J].
Acín, A ;
Durt, T ;
Gisin, N ;
Latorre, JI .
PHYSICAL REVIEW A, 2002, 65 (05) :523251-523258
[2]  
Belinskii A. V., 1993, Physics-Uspekhi, V36, P653, DOI 10.1070/PU1993v036n08ABEH002299
[3]  
Bell JS., 1964, PHYS PHYS FIZIKA, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[4]   MAXIMAL VIOLATION OF BELL INEQUALITIES FOR MIXED STATES [J].
BRAUNSTEIN, SL ;
MANN, A ;
REVZEN, M .
PHYSICAL REVIEW LETTERS, 1992, 68 (22) :3259-3261
[5]   Greenberger-Horne-Zeilinger paradoxes for many qudits [J].
Cerf, NJ ;
Massar, S ;
Pironio, S .
PHYSICAL REVIEW LETTERS, 2002, 89 (08) :1-080402
[6]  
CHEN JL, QUANTPH0311180
[7]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[8]   A relevant two qubit Bell inequality inequivalent to the CHSH inequality [J].
Collins, D ;
Gisin, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05) :1775-1787
[9]   Bell inequalities for arbitrarily high-dimensional systems [J].
Collins, D ;
Gisin, N ;
Linden, N ;
Massar, S ;
Popescu, S .
PHYSICAL REVIEW LETTERS, 2002, 88 (04) :4-404044
[10]   Bell inequality, Bell states and maximally entangled states for n qubits [J].
Gisin, N ;
Bechmann-Pasquinucci, H .
PHYSICS LETTERS A, 1998, 246 (1-2) :1-6