Is an extremely low-field proton signal in the NMR spectrum conclusive evidence for a low-barrier hydrogen bond?

被引:48
作者
GarciaViloca, M [1 ]
Gelabert, R [1 ]
GonzalezLafont, A [1 ]
Moreno, M [1 ]
Lluch, JM [1 ]
机构
[1] UNIV AUTONOMA BARCELONA, DEPT QUIM, BELLATERRA 08193, BARCELONA, SPAIN
关键词
D O I
10.1021/jp972335h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It has been customary to accept that the observation of a highly deshielded proton is conclusive evidence that the molecule possesses a so-called low-barrier hydrogen bond (LBHB). To analyze this point, we have theoretically studied the features of the hydrogen bonds in hydrogen maleate and hydrogen malonate anions, both compounds experimentally characterized as LBHBs, and hydrogen oxalate anion, which has a hydrogen bond of the normal type. Ab initio electronic calculations along with a monodimensional approach to solve the corresponding nuclear Schrodinger equation are combined in order to obtain the ground vibrational energy levels and wave functions associated with the proton transfer in the three systems. According to our results, in the ground vibrational state the proton connecting the hydrogen bond has a maximum probability to be found in the region of the transition state for the hydrogen maleate and hydrogen malonate systems, so that they are LBHBs, whereas for the hydrogen oxalate the proton is localized near one of the two symmetrical minimum-energy structures. Combining the chemical shifts calculated at frozen structures with the probability density functions, we have calculated the H-1 NMR chemical shifts for the three systems. Values of 22.85, 22.41, and 13.93 ppm for hydrogen maleate, hydrogen malonate, and hydrogen oxalate, respectively, have been obtained, results which are in good agreement with experimental values. Finally, these results allow us to discuss whether the appearance of a very high H-1 NMR chemical shift can be considered an unambiguous characterization of an LBHB. We postulate that an LBHB will always have an unusually downfield 1H NMR chemical shift, but the opposite statement is not necessarily true.
引用
收藏
页码:8727 / 8733
页数:7
相关论文
共 41 条
[1]   DO ENZYMES STABILIZE TRANSITION-STATES BY ELECTROSTATIC INTERACTIONS OR PK(A) BALANCE - THE CASE OF TRIOSE PHOSPHATE ISOMERASE (TIM) [J].
ALAGONA, G ;
GHIO, C ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (39) :9855-9862
[2]   PROTON, DEUTERIUM, AND TRITIUM NUCLEAR MAGNETIC-RESONANCE OF INTRA-MOLECULAR HYDROGEN-BONDS - ISOTOPE EFFECTS AND SHAPE OF POTENTIAL-ENERGY FUNCTION [J].
ALTMAN, LJ ;
LAUNGANI, D ;
GUNNARSSON, G ;
WENNERSTROM, H ;
FORSEN, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1978, 100 (26) :8264-8266
[3]   CORRELATIONS BETWEEN PROTON CHEMICAL-SHIFT TENSORS, DEUTERIUM QUADRUPOLE COUPLINGS, AND BOND DISTANCES FOR HYDROGEN-BONDS IN SOLIDS [J].
BERGLUND, B ;
VAUGHAN, RW .
JOURNAL OF CHEMICAL PHYSICS, 1980, 73 (05) :2037-2043
[4]   MOLLER-PLESSET THEORY FOR ATOMIC GROUND-STATE ENERGIES [J].
BINKLEY, JS ;
POPLE, JA .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1975, 9 (02) :229-236
[5]   A new concept for the mechanism of action of chymotrypsin: The role of the low-barrier hydrogen bond [J].
Cassidy, CS ;
Lin, J ;
Frey, PA .
BIOCHEMISTRY, 1997, 36 (15) :4576-4584
[6]   On the calculation of hydrogen NMR chemical shielding [J].
Chesnut, DB .
CHEMICAL PHYSICS, 1997, 214 (01) :73-79
[7]   EFFICIENT DIFFUSE FUNCTION-AUGMENTED BASIS SETS FOR ANION CALCULATIONS. III. THE 3-21+G BASIS SET FOR FIRST-ROW ELEMENTS, LI-F [J].
CLARK, T ;
CHANDRASEKHAR, J ;
SPITZNAGEL, GW ;
SCHLEYER, PV .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (03) :294-301
[8]  
CLELAND WW, 1995, SCIENCE, V269, P104, DOI 10.1126/science.269.5220.104
[9]   LOW-BARRIER HYDROGEN-BONDS AND LOW FRACTIONATION FACTOR BASES IN ENZYMATIC-REACTIONS [J].
CLELAND, WW .
BIOCHEMISTRY, 1992, 31 (02) :317-319
[10]   LOW-BARRIER HYDROGEN-BONDS AND ENZYMATIC CATALYSIS [J].
CLELAND, WW ;
KREEVOY, MM .
SCIENCE, 1994, 264 (5167) :1887-1890