Stable ergodicity of skew products

被引:41
作者
Burns, K [1 ]
Wilkinson, A [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 1999年 / 32卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0012-9593(00)87721-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stable ergodicity is dense among compact Lie group extensions of Anosov diffeomorphisms of compact manifolds. Under the additional assumption that the base map acts on an infranilmanifold, an extension that is not stably ergodic must have a factor that has one of three special forms. A consequence is that stable ergodicity and stable ergodicity within skew products are equivalent in this case. (C) Elsevier, Paris.
引用
收藏
页码:859 / 889
页数:31
相关论文
共 26 条
[1]  
ADLER RL, 1996, DISCRETE CONTINUOUS, V2, P349
[2]  
[Anonymous], T MAT I STEKLOVA
[3]  
BRIN M, 1975, FUNC ANAL APPL, V9, P9
[4]  
Brin M., 1975, Mat. Zametki, V18, P453
[5]  
BRIN M., 1974, MATH USSR IZV, V38, p[170, 177]
[6]  
BURNS K, IN PRESS TOPOLOGY
[7]  
Cheeger J., 1975, COMP THEOREMS RIEMAN
[8]   Stable ergodicity of skew extensions by compact Lie groups [J].
Field, M ;
Parry, W .
TOPOLOGY, 1999, 38 (01) :167-187
[9]   STABLY ERGODIC DIFFEOMORPHISMS [J].
GRAYSON, M ;
PUGH, C ;
SHUB, M .
ANNALS OF MATHEMATICS, 1994, 140 (02) :295-329
[10]  
Helgason S., 1979, Differential geometry, Lie groups and symmetric spaces