Magnetic field threshold for runaway generation in tokamak disruptions

被引:42
作者
Fulop, T. [1 ,2 ]
Smith, H. M. [3 ]
Pokol, G. [4 ]
机构
[1] Chalmers Univ Technol, Dept Radio & Space Sci, SE-41296 Gothenburg, Sweden
[2] Euratom VR Assoc, SE-41296 Gothenburg, Sweden
[3] Univ Warwick, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
[4] Budapest Univ Technol & Econ, EURATOM Assoc, Dept Nucl Tech, H-1111 Budapest, Hungary
基金
英国工程与自然科学研究理事会;
关键词
magnetic fields; plasma production; plasma toroidal confinement; plasma transport processes; Tokamak devices; whistlers; ELECTRONS; AVALANCHE;
D O I
10.1063/1.3072980
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experimental observations show that there is a magnetic field threshold for runaway electron generation in tokamak disruptions. In this work, two possible reasons for this threshold are studied. The first possible explanation for these observations is that the runaway beam excites whistler waves that scatter the electrons in velocity space prevents the beam from growing. The growth rates of the most unstable whistler waves are inversely proportional to the magnetic field strength. Taking into account the collisional and convective damping of the waves it is possible to derive a magnetic field threshold below which no runaways are expected. The second possible explanation is the magnetic field dependence of the criterion for substantial runaway production obtained by calculating how many runaway electrons can be produced before the induced toroidal electric field diffuses out of the plasma. It is shown, that even in rapidly cooling plasmas, where hot-tail generation is expected to give rise to substantial runaway population, the whistler waves can stop the runaway formation below a certain magnetic field unless the postdisruption temperature is very low.
引用
收藏
页数:6
相关论文
共 23 条
[1]   Damping of relativistic electron beams by synchrotron radiation [J].
Andersson, F ;
Helander, P ;
Eriksson, LG .
PHYSICS OF PLASMAS, 2001, 8 (12) :5221-5229
[2]   The ITER design [J].
Aymar, R ;
Barabaschi, P ;
Shimomura, Y .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (05) :519-565
[3]   Role of bremsstrahlung radiation in limiting the energy of runaway electrons in tokamaks [J].
Bakhtiari, M ;
Kramer, GJ ;
Takechi, M ;
Tamai, H ;
Miura, Y ;
Kusama, Y ;
Kamada, Y .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[4]   THE EFFECTS OF COULOMB COLLISIONS ON THE PROPAGATION OF COLD-PLASMA WAVES [J].
BRAMBILLA, M .
PHYSICS OF PLASMAS, 1995, 2 (04) :1094-1099
[5]   Fokker-Planck simulations of knock-on electron runaway avalanche and bursts in tokamaks [J].
Chiu, SC ;
Rosenbluth, MN ;
Harvey, RW ;
Chan, VS .
NUCLEAR FUSION, 1998, 38 (11) :1711-1721
[6]   Destabilization of fast-ion-induced long sawteeth by localized current drive in the JET tokamak [J].
Eriksson, LG ;
Mueck, A ;
Sauter, O ;
Coda, S ;
Mantsinen, MJ ;
Mayoral, ML ;
Westerhof, E ;
Buttery, RJ ;
McDonald, D ;
Johnson, T ;
Noterdaeme, JM ;
de Vries, P .
PHYSICAL REVIEW LETTERS, 2004, 92 (23) :235004-1
[7]   Destabilization of magnetosonic-whistler waves by a relativistic runaway beam [J].
Fulop, T. ;
Pokol, G. ;
Helander, P. ;
Lisak, M. .
PHYSICS OF PLASMAS, 2006, 13 (06)
[8]   Behaviour of disruption generated runaways in JET [J].
Gill, RD ;
Alper, B ;
de Baar, M ;
Hender, TC ;
Johnson, MF ;
Riccardo, V .
NUCLEAR FUSION, 2002, 42 (08) :1039-1044
[9]   Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model [J].
Harvey, RW ;
Chan, VS ;
Chiu, SC ;
Evans, TE ;
Rosenbluth, MN ;
Whyte, DG .
PHYSICS OF PLASMAS, 2000, 7 (11) :4590-4599
[10]   Suppression of runaway electron avalanches by radial diffusion [J].
Helander, P ;
Eriksson, LG ;
Andersson, F .
PHYSICS OF PLASMAS, 2000, 7 (10) :4106-4111