Material Crystallinity as a Determinant of Triplet Dynamics and Oxygen Quenching in Donor Polymers for Organic Photovoltaic Devices

被引:80
作者
Soon, Ying W. [1 ]
Shoaee, Safa [1 ]
Ashraf, Raja Shahid [1 ]
Bronstein, Hugo [1 ]
Schroeder, Bob C. [1 ]
Zhang, Weimin [1 ]
Fei, Zhuping [1 ]
Heeney, Martin [1 ]
McCulloch, Iain [1 ]
Durrant, James R. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, Ctr Plast Elect, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
organic photovoltaics; triplet states; photophysics; polymers; crystallinity; SINGLET OXYGEN; PHOTOOXIDATIVE DEGRADATION; REACTIVE INTERMEDIATE; CHARGE-TRANSPORT; SOLAR-CELLS; FILMS; PHOTODEGRADATION; PERFORMANCE; GENERATION; MORPHOLOGY;
D O I
10.1002/adfm.201302612
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper is concerned with the photophysics of triplet excitons in conjugated donor polymers, and their quenching by molecular oxygen. These photophysics are assayed by transient absorption spectroscopy, and correlated with X-ray diffraction measurements of relative material crystallinity. Eleven different donor polymers are considered, including representatives from several classes of donor polymers recently developed for organic solar cell applications. Triplet lifetimes in an inert (nitrogen) environment range from <100 ns to 5 s. A remarkably quantitative correlation is observed between these triplet lifetimes and polymer XRD strength, with more crystalline polymers exhibiting shorter triplet lifetimes. Given the broad range of polymers considered, this correlation indicates that material crystallinity is the dominant factor determining triplet lifetime for the polymers studied herein. The rate constant for oxygen quenching of these triplet states, determined from a comparison of transient absorption data under inert and oxygen environments, also show a correlation with material crystallinity. Overall these dependencies result in the yield of oxygen quenching of polymer triplet states increasing strongly as the crystallinity of the polymer is reduced. These photophysical data are compared with photochemical stability of these donor polymers, assayed by photobleaching studies of polymer films under continuous light exposure in an oxygen environment. A partial correlation is observed, with the most stable polymers being the most crystalline, exhibiting negligible oxygen quenching yields. These results are discussed in terms of the likely origins of the correlations between material crystallinity and photophysics, and in terms of their implications for the environmental stability of such donor polymers in optoelectronic devices.
引用
收藏
页码:1474 / 1482
页数:9
相关论文
共 74 条
[1]   Solid-state photochemistry of pi-conjugated poly(3-alkylthiophenes) [J].
Abdou, MSA ;
Holdcroft, S .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1995, 73 (11) :1893-1901
[2]   Silaindacenodithiophene Semiconducting Polymers for Efficient Solar Cells and High-Mobility Ambipolar Transistors [J].
Ashraf, Raja Shahid ;
Chen, Zhuoying ;
Leem, Dong Seok ;
Bronstein, Hugo ;
Zhang, Weimin ;
Schroeder, Bob ;
Geerts, Yves ;
Smith, Jeremy ;
Watkins, Scott ;
Anthopoulos, Thomas D. ;
Sirringhaus, Henning ;
de Mello, John C. ;
Heeney, Martin ;
McCulloch, Iain .
CHEMISTRY OF MATERIALS, 2011, 23 (03) :768-770
[3]  
Atkins P., 2006, INORGANIC CHEM
[4]   Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation [J].
Baldo, MA ;
Adachi, C ;
Forrest, SR .
PHYSICAL REVIEW B, 2000, 62 (16) :10967-10977
[5]   Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J].
Baldo, MA ;
Lamansky, S ;
Burrows, PE ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 1999, 75 (01) :4-6
[6]   ENVIRONMENTAL EFFECTS ON PHOSPHORESCENCE .3. OXYGEN QUENCHING OF NAPHTHALENE TRIPLETS IN COMPRESSED POLYMETHYLMETHACRYLATE [J].
BALDWIN, BA ;
OFFEN, HW .
JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (07) :2933-&
[7]   Multiple exciton generation in colloidal silicon nanocrystals [J].
Beard, Matthew C. ;
Knutsen, Kelly P. ;
Yu, Pingrong ;
Luther, Joseph M. ;
Song, Qing ;
Metzger, Wyatt K. ;
Ellingson, Randy J. ;
Nozik, Arthur J. .
NANO LETTERS, 2007, 7 (08) :2506-2512
[8]   Comprehensive evaluation of the absorption, photophysical, energy transfer, structural, and theoretical properties of alpha-oligothiophenes with one to seven rings [J].
Becker, RS ;
deMelo, JS ;
Macanita, AL ;
Elisei, F .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (48) :18683-18695
[9]   Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells [J].
Beiley, Zach M. ;
Hoke, Eric T. ;
Noriega, Rodrigo ;
Dacuna, Javier ;
Burkhard, George F. ;
Bartelt, Jonathan A. ;
Salleo, Alberto ;
Toney, Michael F. ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2011, 1 (05) :954-962
[10]   Spin-orbit coupling and intersystem crossing in conjugated polymers: A configuration interaction description [J].
Beljonne, D ;
Shuai, Z ;
Pourtois, G ;
Bredas, JL .
JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (15) :3899-3907