Fuzzy controller design for Chua chaotic system - LMI method

被引:12
作者
Wu, ZQ [1 ]
Yue, D
Xu, SF
机构
[1] Yanshan Univ, Coll Elect Engn, Qinhuangdao 066004, Peoples R China
[2] Nanjing Normal Univ, Dept Control Sci & Engn, Nanjing 210042, Peoples R China
[3] China Univ Min & Technol, Coll Informat & Elect Engn, Xuzhao 221008, Peoples R China
关键词
Chua chaotic system; fuzzy dynamic model; linear matrix inequalities;
D O I
10.7498/aps.51.1193
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of stable controlling chaotic Chua circuit has been studied. Using T-S fuzzy model as an approximation for nonlinear chaotic system, the nonlinear chaotic system has been fuzzy into local linear model. The controller designed by using Lyapunov theory insures the stability of fuzzy dynamic system. The parameter of fuzzy controller is got by convex optimal method of LMI. The effect of the scheme has been tasted by simulation. The Fuzzy controller is simple, and need no much rules.
引用
收藏
页码:1193 / 1197
页数:5
相关论文
共 18 条
[1]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[2]  
GAHINET P, 1995, NATICK MA
[3]   A nonlinear feedback approach for realizing any continuous time scalar (hyper) chaotic signal synchronization control [J].
Gao, JF ;
Luo, XJ ;
Ma, XK .
ACTA PHYSICA SINICA, 2000, 49 (05) :838-843
[4]   A nonlinear state feedback approach to the control and synchronization of continuous-time chaotic systems [J].
Gao, JF ;
Luo, XJ ;
Ma, XK ;
Pan, XQ ;
Wang, JK .
ACTA PHYSICA SINICA, 1999, 48 (09) :1618-1627
[5]   The synchronization of chaotic systems based on RBF network in the presence of perturbation [J].
Guan, XP ;
Fan, ZP ;
Peng, HP ;
Wang, YQ .
ACTA PHYSICA SINICA, 2001, 50 (09) :1670-1674
[6]   The adaptive control of Chen's chaotic system [J].
Guan, XP ;
Fan, ZP ;
Peng, HP ;
Wang, YQ .
ACTA PHYSICA SINICA, 2001, 50 (11) :2108-2111
[7]  
LI LX, 2001, CHINESE PHYS, V10, P9
[8]   A modified periodic pulse method to control the chaos of conservative flow [J].
Li, W ;
Chen, GZ ;
Liu, ZH .
ACTA PHYSICA SINICA, 1999, 48 (04) :581-588
[9]   Adaptive control for a class of chaotic systems with uncertain parameters [J].
Li, Z ;
Han, CZ .
ACTA PHYSICA SINICA, 2001, 50 (05) :847-850
[10]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199