Stochastic quantization of nonlocal fields

被引:36
作者
Lim, SC [1 ]
Muniandy, SV
机构
[1] Mulitmedia Univ, Fac Engn, Cyberjaya 63100, Malaysia
[2] Univ Kebangsaan Malaysia, Sch Appl Phys, Bangi 43600, Malaysia
关键词
fractional oscillator; stochastic quantization; fractional nonlocal field;
D O I
10.1016/j.physleta.2004.02.073
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantization of fractional Klein-Gordon field and fractional electromagnetic potential in the Coulomb gauge and the temporal gauge can be carried out using a modification of the quantization method based on stochastic mechanics. The usual oscillator process is replaced by a fractional oscillator process which satisfied a fractional Langevin equation. Properties of these fractional fields are discussed. We also show that the Parisi-Wu stochastic quantization method can be applied to fractional fields. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:396 / 405
页数:10
相关论文
共 37 条
[1]  
[Anonymous], 1993, INTEGRALS DERIVATIVE
[2]   Lorentz-invariant pseudo-differential wave equations [J].
Barci, DG ;
Bollini, CG ;
Oxman, LE ;
Rocca, MC .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (12) :3015-3030
[3]   On bosonization in 3 dimensions [J].
Barci, DG ;
Fosco, CD ;
Oxman, LE .
PHYSICS LETTERS B, 1996, 375 (1-4) :267-272
[4]   Canonical quantization of nonlocal field equations [J].
Barci, DG ;
Oxman, LE ;
Rocca, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (12) :2111-2126
[5]   COVARIANT PERTURBATION-THEORY .2. 2ND-ORDER IN THE CURVATURE - GENERAL ALGORITHMS [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
NUCLEAR PHYSICS B, 1990, 333 (02) :471-511
[6]  
Bollini C. G., 1987, Revista Brasileira de Fisica, V17, P14
[7]   ARBITRARY POWERS OF DALEMBERTIANS AND THE HUYGENS PRINCIPLE [J].
BOLLINI, CG ;
GIAMBIAGI, JJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (02) :610-621
[8]  
CARLEN EA, 1988, LECT NOTES MATH, V1325
[9]   RUNNING COUPLING-CONSTANTS, NEWTONIAN POTENTIAL, AND NONLOCALITIES IN THE EFFECTIVE ACTION [J].
DALVIT, DAR ;
MAZZITELLI, FD .
PHYSICAL REVIEW D, 1994, 50 (02) :1001-1009
[10]   CANONICAL QUANTIZATION OF THEORIES CONTAINING FRACTIONAL-POWERS OF THE DALEMBERTIAN OPERATOR [J].
DOAMARAL, RLPG ;
MARINO, EC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (19) :5183-5200