Adipokines as regulators of muscle metabolism and insulin sensitivity

被引:110
作者
Dyck, David J. [1 ]
机构
[1] Univ Guelph, Dept Human Hlth & Nutr Sci, Guelph, ON N1G 2W1, Canada
关键词
leptin; adiponectin; fatty acid metabolism; fatty acid transport; resistance; FATTY-ACID OXIDATION; HUMAN SKELETAL-MUSCLE; ACTIVATED PROTEIN-KINASE; PHOSPHATIDYLINOSITOL 3-KINASE ACTIVITY; CHRONIC LEPTIN TREATMENT; GLOBULAR ADIPONECTIN; GLUCOSE-TRANSPORT; AMP-KINASE; GLUT4; TRANSLOCATION; INCREASED RATES;
D O I
10.1139/H09-037
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Skeletal muscle is the largest tissue responsible for the insulin-stimulated disposal of glucose. However, identifying the link between excess body fat and impaired insulin sensitivity in skeletal muscle has been difficult. Several adipose-derived cytokines (adipokines) have been implicated in the impairment of insulin sensitivity, while adipokines such as leptin and adiponectin exert an insulin-sensitizing effect. Leptin and adiponectin have each been shown to increase fatty acid (FA) oxidation and decrease triglyceride storage in muscle, which may explain, in part, the insulin-sensitizing effect of these cytokines. Recent evidence strongly implicates an increased localization of the FA transporters to the plasma membrane (PM) as an important factor in the accumulation of intramuscular lipids with high-fat diets and obesity. Perhaps suprisingly, relatively little attention has been paid to the ability of insulin-sensitizing compounds, such as leptin and adiponectin, to decrease the abundance of FA transporters in the PM, thereby decreasing lipid accumulation. In the case of both adipokines, there is also evidence that a resistance to their ability to stimulate FA oxidation in skeletal muscle develops during obesity. One of our recent studies indicates that this development can be very rapid (i.e., within days), and precedes the increase in lipid uptake and accumulation that leads to insulin resistance. It is noteworthy that leptin resistance can be modulated by both diet and training in rodents. Further studies examing the underlying mechanisms of the development of leptin and adiponectin resistance are warranted.
引用
收藏
页码:396 / 402
页数:7
相关论文
共 81 条
[1]  
Abumrad N, 1998, J LIPID RES, V39, P2309
[2]   Ceramide content is increased in skeletal muscle from obese insulin-resistant humans [J].
Adams, JM ;
Pratipanawatr, T ;
Berria, R ;
Wang, E ;
DeFronzo, RA ;
Sullards, MC ;
Mandarino, LJ .
DIABETES, 2004, 53 (01) :25-31
[3]   Regulation of plasma leptin in mice: Influence of age, high-fat diet, and fasting [J].
Ahren, B ;
Mansson, S ;
Gingerich, RL ;
Havel, PJ .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 1997, 273 (01) :R113-R120
[4]   Impaired transport of leptin across the blood-brain barrier in obesity is acquired and reversible [J].
Banks, WA ;
Farrell, CL .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2003, 285 (01) :E10-E15
[5]   Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36 [J].
Bonen, A ;
Parolin, ML ;
Steinberg, GR ;
Calles-Escandon, J ;
Tandon, NN ;
Glatz, JFC ;
Luiken, JJFP ;
Heigenhauser, GJF ;
Dyck, DJ .
FASEB JOURNAL, 2004, 18 (07) :1144-+
[6]   Palmitate transport and fatty acid transporters in red and white muscles [J].
Bonen, A ;
Luiken, JJFP ;
Liu, S ;
Dyck, DJ ;
Kiens, B ;
Kristiansen, S ;
Turcotte, LP ;
Van der Vusse, GJ ;
Glatz, JFC .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1998, 275 (03) :E471-E478
[7]   The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects [J].
Bruce, CR ;
Mertz, VA ;
Heigenhauser, GJF ;
Dyck, DJ .
DIABETES, 2005, 54 (11) :3154-3160
[8]   Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells [J].
Ceddia, RB ;
Somwar, R ;
Maida, A ;
Fang, X ;
Bikopoulos, G ;
Sweeney, G .
DIABETOLOGIA, 2005, 48 (01) :132-139
[9]   Adiponectin Blocks Interleukin-18-mediated Endothelial Cell Death via APPL1-dependent AMP-activated Protein Kinase (AMPK) Activation and IKK/NF-κB/PTEN Suppression [J].
Chandrasekar, Bysani ;
Boylston, William H. ;
Venkatachalam, Kaliyamurthi ;
Webster, Nicholas J. G. ;
Prabhu, Sumanth D. ;
Valente, Anthony J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (36) :24889-24898
[10]   Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics [J].
Chen, MB ;
McAinch, AJ ;
Macaulay, SL ;
Castelli, LA ;
O'Brien, PE ;
Dixon, JB ;
Cameron-Smith, D ;
Kemp, BE ;
Steinberg, GR .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2005, 90 (06) :3665-3672