Quantitative genomics of aggressive behavior in Drosophila melanogaster

被引:149
作者
Edwards, Alexis C.
Rollmann, Stephanie M.
Morgan, Theodore J.
Mackay, Trudy F. C. [1 ]
机构
[1] N Carolina State Univ, Dept Genet, Raleigh, NC 27695 USA
[2] N Carolina State Univ, WM Keck Ctr Behav Biol, Raleigh, NC 27695 USA
关键词
D O I
10.1371/journal.pgen.0020154
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Aggressive behavior is important for animal survival and reproduction, and excessive aggression is an enormous social and economic burden for human society. Although the role of biogenic amines in modulating aggressive behavior is well characterized, other genetic mechanisms affecting this complex behavior remain elusive. Here, we developed an assay to rapidly quantify aggressive behavior in Drosophila melanogaster, and generated replicate selection lines with divergent levels of aggression. The realized heritability of aggressive behavior was approximately 0.10, and the phenotypic response to selection specifically affected aggression. We used whole-genome expression analysis to identify 1,539 probe sets with different expression levels between the selection lines when pooled across replicates, at a false discovery rate of 0.001. We quantified the aggressive behavior of 19 mutations in candidate genes that were generated in a common co-isogenic background, and identified 15 novel genes affecting aggressive behavior. Expression profiling of genetically divergent lines is an effective strategy for identifying genes affecting complex traits.
引用
收藏
页码:1386 / 1395
页数:10
相关论文
共 54 条
[1]  
Allen A, 1998, Telemed Today, V6, P10
[2]   The genetic architecture of odor-guided behavior in Drosophila:: epistasis and the transcriptome [J].
Anholt, RRH ;
Dilda, CL ;
Chang, S ;
Fanara, JJ ;
Kulkarni, NH ;
Ganguly, I ;
Rollmann, SM ;
Kamdar, KP ;
Mackay, TFC .
NATURE GENETICS, 2003, 35 (02) :180-184
[3]  
Baier A, 2002, J EXP BIOL, V205, P1233
[4]   The BDGP gene disruption project: Single transposon insertions associated with 40% of Drosophila genes [J].
Bellen, HJ ;
Levis, RW ;
Liao, GC ;
He, YC ;
Carlson, JW ;
Tsang, G ;
Evans-Holm, M ;
Hiesinger, PR ;
Schulze, KL ;
Rubin, GM ;
Hoskins, RA ;
Spradling, AC .
GENETICS, 2004, 167 (02) :761-781
[5]  
BRUNNER HG, 1993, AM J HUM GENET, V52, P1032
[6]   Phenotypic variation and natural selection at Catsup, a pleiotropic quantitative trait gene in Drosphila [J].
Carbone, Mary Anna ;
Jordan, Katherine W. ;
Lyman, Richard F. ;
Harbison, Susan T. ;
Leips, Jeff ;
Morgan, Theodore J. ;
DeLuca, Maria ;
Awadalla, Philip ;
Mackay, Trudy F. C. .
CURRENT BIOLOGY, 2006, 16 (09) :912-919
[7]   AGGRESSIVE-BEHAVIOR AND ALTERED AMOUNTS OF BRAIN-SEROTONIN AND NOREPINEPHRINE IN MICE LACKING MAOA [J].
CASES, O ;
SEIF, I ;
GRIMSBY, J ;
GASPAR, P ;
CHEN, K ;
POURNIN, S ;
MULLER, U ;
AGUET, M ;
BABINET, C ;
SHIH, JC ;
DEMAEYER, E .
SCIENCE, 1995, 268 (5218) :1763-1766
[8]   Role of genotype in the cycle of violence in maltreated children [J].
Caspi, A ;
McClay, J ;
Moffitt, TE ;
Mill, J ;
Martin, J ;
Craig, IW ;
Taylor, A ;
Poulton, R .
SCIENCE, 2002, 297 (5582) :851-854
[9]   Fighting fruit flies: A model system for the study of aggression [J].
Chen, S ;
Lee, AY ;
Bowens, NM ;
Huber, R ;
Kravitz, EA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5664-5668
[10]   Interaction of nitric oxide and serotonin in aggressive behavior [J].
Chiavegatto, S ;
Nelson, RJ .
HORMONES AND BEHAVIOR, 2003, 44 (03) :233-241