Asymptotic states in nonlocal field theories

被引:14
作者
Barci, DG [1 ]
Oxman, LE [1 ]
机构
[1] UNIV FED RIO DE JANEIRO,INST FIS,DEPT FIS TEOR,BR-21945970 RIO JANEIRO,BRAZIL
关键词
D O I
10.1142/S0217732397000510
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Asymptotic states in field theories containing nonlocal kinetic terms are analyzed using the canonical method, naturally defined in Minkowski space. We apply our results to study the asymptotic states of a nonlocal Maxwell-Chern-Simons theory coming from bosonization in (2 + 1) dimensions. We show that in this case the only asymptotic state of the theory, in the trivial (non-topological) sector, is the vacuum.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 13 条
[1]  
Amaral R. L. P. G., 1992, J PHYS A, V25, P5183
[2]  
BANERJEE R, HEPTH9607040
[3]   On bosonization in 3 dimensions [J].
Barci, DG ;
Fosco, CD ;
Oxman, LE .
PHYSICS LETTERS B, 1996, 375 (1-4) :267-272
[4]   Canonical quantization of nonlocal field equations [J].
Barci, DG ;
Oxman, LE ;
Rocca, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (12) :2111-2126
[5]  
BARCI DG, HEPTH9606183
[6]   ARBITRARY POWERS OF DALEMBERTIANS AND THE HUYGENS PRINCIPLE [J].
BOLLINI, CG ;
GIAMBIAGI, JJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (02) :610-621
[7]   TOPOLOGICALLY MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R ;
TEMPLETON, S .
ANNALS OF PHYSICS, 1982, 140 (02) :372-411
[8]   THE FERMION-BOSON MAPPING IN 3-DIMENSIONAL QUANTUM-FIELD THEORY [J].
FRADKIN, E ;
SCHAPOSNIK, FA .
PHYSICS LETTERS B, 1994, 338 (2-3) :253-258
[9]   GENERALIZED FREE FIELDS AND MODELS OF LOCAL FIELD THEORY [J].
GREENBERG, OW .
ANNALS OF PHYSICS, 1961, 16 (02) :158-176
[10]   Current algebra and bosonization in three dimensions [J].
LeGuillou, JC ;
Nunez, C ;
Schaposnik, FA .
ANNALS OF PHYSICS, 1996, 251 (02) :426-441