Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications

被引:1176
作者
Faber, Matthew S. [1 ]
Jin, Song [1 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
HYDROGEN EVOLUTION REACTION; SENSITIZED SOLAR-CELLS; ACTIVE EDGE SITES; TRANSITION-METAL DICHALCOGENIDES; COUNTER ELECTRODE CATALYSTS; MOS2 ULTRATHIN NANOSHEETS; OXYGEN-REDUCTION; MOLYBDENUM CARBIDE; RECENT PROGRESS; TUNGSTEN CARBIDE;
D O I
10.1039/c4ee01760a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalysis plays a key role in the energy conversion processes central to several renewable energy technologies that have been developed to lessen our reliance on fossil fuels. However, the best electrocatalysts for these processes-which include the hydrogen evolution reaction (HER), the oxygen reduction reaction (ORR), and the redox reactions that enable regenerative liquid-junction photoelectrochemical solar cells-often contain scarce and expensive noble metals, substantially limiting the potential for these technologies to compete with fossil fuels. The considerable challenge is to develop robust electrocatalysts composed exclusively of low-cost, earth-abundant elements that exhibit activity comparable to that of the noble metals. In this review, we summarize recent progress in the development of such high-performance earth-abundant inorganic electrocatalysts (and nanostructures thereof), classifying these materials based on their elemental constituents. We then detail the most critical obstacles facing earth-abundant inorganic electrocatalysts and discuss various strategies for further improving their performance. Lastly, we offer our perspectives on the current directions of earth-abundant inorganic electrocatalyst development and suggest pathways toward achieving performance competitive with their noble metal-containing counterparts.
引用
收藏
页码:3519 / 3542
页数:24
相关论文
共 234 条
[1]   Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys [J].
Alexander, Anne-Marie ;
Hargreaves, Justin S. J. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (11) :4388-4401
[2]   ELECTROCHEMISTRY OF SULPHUR .1. OVERPOTENTIAL IN THE DISCHARGE OF THE SULPHIDE ION [J].
ALLEN, PL ;
HICKLING, A .
TRANSACTIONS OF THE FARADAY SOCIETY, 1957, 53 (12) :1626-1635
[3]  
Andreiadis ES, 2013, NAT CHEM, V5, P48, DOI [10.1038/NCHEM.1481, 10.1038/nchem.1481]
[4]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[5]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[6]   Some general principles for designing electrocatalysts with hydrogenase activity [J].
Artero, V ;
Fontecave, M .
COORDINATION CHEMISTRY REVIEWS, 2005, 249 (15-16) :1518-1535
[7]   Splitting Water with Cobalt [J].
Artero, Vincent ;
Chavarot-Kerlidou, Murielle ;
Fontecave, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (32) :7238-7266
[8]  
BARESEL D, 1974, BER BUNSEN PHYS CHEM, V78, P608
[9]   Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity [J].
Benck, Jesse D. ;
Chen, Zhebo ;
Kuritzky, Leah Y. ;
Forman, Arnold J. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2012, 2 (09) :1916-1923
[10]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99