Design criteria for superlubricity in carbon films and related microstructures

被引:80
作者
Erdemir, A [1 ]
机构
[1] Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA
关键词
carbon films; superlubricity; microstructure; design criteria;
D O I
10.1016/j.triboint.2003.12.007
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Carbon offers the kind of flexibility that one needs in the design and production of chemically unique microstructures with properties ranging from superlubricity to super-hardness and/or -softness. This flexibility can be exploited for numerous tribological applications, ranging in sizes from nano-scale electromechanical systems to meso-scale engine parts and components. Recently, carbon was used in our laboratory to produce nearly frictionless carbon (NFC) films having friction coefficients as low as 0.001 and wear rates of 10(-11)-10(-10) mm(3)/N in even under dry sliding conditions and at very high contact pressures. Using advanced fabrication and chemical vapor deposition methods, our research team has pioneered the development of other unique microstructures possessing exceptional physical, chemical, mechanical, electrical, and tribological properties. The combination of such exceptional properties in one material is rather rare, but urgently needed by the industry to meet the increasingly multifunctional needs of advanced mechanical systems and devices. This paper provides an overview of recent progress in the study and understanding of the tribological properties of carbon-based coatings. The design and surface engineering aspects of such coatings are discussed and the principles of superlubricity in these films are presented. Examples of current and future applications for two- and three-dimensional carbon-based structures are also provided. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:577 / 583
页数:7
相关论文
共 27 条
[1]   SUBLIMED C-60 FILMS FOR TRIBOLOGY [J].
BHUSHAN, B ;
GUPTA, BK ;
VANCLEEF, GW ;
CAPP, C ;
COE, JV .
APPLIED PHYSICS LETTERS, 1993, 62 (25) :3253-3255
[2]   FRICTION OF DIAMOND, GRAPHITE, AND CARBON AND THE INFLUENCE OF SURFACE FILMS [J].
BOWDEN, FP ;
YOUNG, JE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 208 (1095) :444-455
[3]   THE ROLE OF ENVIRONMENT IN THE FRICTION OF DIAMOND FOR MAGNETIC RECORDING HEAD APPLICATIONS [J].
CHANDRASEKAR, S ;
BHUSHAN, B .
WEAR, 1992, 153 (01) :79-89
[4]   Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review [J].
Donnet, C .
SURFACE & COATINGS TECHNOLOGY, 1998, 100 (1-3) :180-186
[5]   Tribological properties of nanocrystalline diamond films [J].
Erdemir, A ;
Fenske, GR ;
Krauss, AR ;
Gruen, DM ;
McCauley, T ;
Csencsits, RT .
SURFACE & COATINGS TECHNOLOGY, 1999, 120 :565-572
[6]   The role of hydrogen in tribological properties of diamond-like carbon films [J].
Erdemir, A .
SURFACE & COATINGS TECHNOLOGY, 2001, 146 :292-297
[7]   Tribology of naturally occurring boric acid films on boron carbide [J].
Erdemir, A ;
Bindal, C ;
Zuiker, C ;
Savrun, E .
SURFACE & COATINGS TECHNOLOGY, 1996, 86-7 (1-3) :507-510
[8]   Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas [J].
Erdemir, A ;
Eryilmaz, OL ;
Nilufer, IB ;
Fenske, GR .
SURFACE & COATINGS TECHNOLOGY, 2000, 133 :448-454
[9]   Effect of source gas chemistry on tribological performance of diamond-like carbon films [J].
Erdemir, A ;
Eryilmaz, OL ;
Nilufer, IB ;
Fenske, GR .
DIAMOND AND RELATED MATERIALS, 2000, 9 (3-6) :632-637
[10]   Friction and wear performance of diamond-like carbon films grown in various source gas plasmas [J].
Erdemir, A ;
Nilufer, IB ;
Eryilmaz, OL ;
Beschliesser, M ;
Fenske, GR .
SURFACE & COATINGS TECHNOLOGY, 1999, 120 :589-593