High voltage sulphate cathodes Li2M(SO4)2 (M = Fe, Mn, Co): atomic-scale studies of lithium diffusion, surfaces and voltage trends

被引:51
作者
Clark, John M. [1 ]
Eames, Christopher [1 ]
Reynaud, Marine [2 ]
Rousse, Gwenaelle [3 ,4 ]
Chotard, Jean-Noel [2 ]
Tarascon, Jean-Marie [4 ]
Islam, M. Saiful [1 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[2] Univ Picardie Jules Verne, LRCS, CNRS UMR 7314, F-80039 Amiens, France
[3] Univ Paris 06, CNRS UMR 7590, IMPMC, F-75252 Paris 05, France
[4] Coll France, F-75231 Paris 05, France
基金
英国工程与自然科学研究理事会;
关键词
POSITIVE-ELECTRODE MATERIALS; LI-ION BATTERIES; ELECTROCHEMISTRY; SIMULATION; TRANSPORT; LIFESO4F; INSIGHTS; DEFECTS; PYROPHOSPHATE; CHALLENGES;
D O I
10.1039/c3ta15064j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The search for high voltage cathodes for lithium-ion batteries has led to recent interest in the monoclinic Li2Fe(SO4)(2) material which has a voltage of 3.83 V vs. lithium, the highest recorded for a fluorine-free iron-based compound. Here we investigate the defect, surface and lithium migration properties of the Li2M(SO4)(2) (M = Fe, Mn, Co) materials using combined atomistic modelling and density functional theory (DFT) techniques. All intrinsic defect types including Li/M antisite disorder are found to be of high energy, suggesting insignificant concentrations. Low activation energies are found for lithium migration along the a-axis channels giving rise to long-range 1D diffusion, which are supported by molecular dynamics (MD) simulations. For the crystal morphology a significant surface area is exposed to these 1D diffusion channels, which would allow facile Li insertion and extraction. Using DFT simulations we reproduce the high voltage of the Li2Fe(SO4)(2) material in accord with electrochemical data and also examine local structural distortions on lithium extraction.
引用
收藏
页码:7446 / 7453
页数:8
相关论文
共 60 条
  • [1] CALCULATED BULK AND SURFACE-PROPERTIES OF SULFATES
    ALLAN, NL
    ROHL, AL
    GAY, DH
    CATLOW, CRA
    DAVEY, RJ
    MACKRODT, WC
    [J]. FARADAY DISCUSSIONS, 1993, 95 : 273 - 280
  • [2] Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries
    Amine, K
    Yasuda, H
    Yamachi, M
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (04) : 178 - 179
  • [3] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [4] Structure and Lithium Transport Pathways in Li2FeSiO4 Cathodes for Lithium Batteries
    Armstrong, A. Robert
    Kuganathan, Navaratnarajah
    Islam, M. Saiful
    Bruce, Peter G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (33) : 13031 - 13035
  • [5] Armstrong AR, 2011, NAT MATER, V10, P223, DOI [10.1038/nmat2967, 10.1038/NMAT2967]
  • [6] Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study
    Arrouvel, Corinne
    Parker, Stephen C.
    Islam, M. Saiful
    [J]. CHEMISTRY OF MATERIALS, 2009, 21 (20) : 4778 - 4783
  • [7] Synthesis and electrochemical properties of pure LiFeSO4F in the triplite structure
    Ati, M.
    Melot, B. C.
    Chotard, J. -N.
    Rousse, G.
    Reynaud, M.
    Tarascon, J. -M.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (11) : 1280 - 1283
  • [8] Barpanda P, 2011, NAT MATER, V10, P772, DOI [10.1038/nmat3093, 10.1038/NMAT3093]
  • [9] GEOMETRY OF POLYHEDRAL DISTORTIONS - PREDICTIVE RELATIONSHIPS FOR PHOSPHATE GROUP
    BAUR, WH
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1974, 30 (MAY15): : 1195 - 1215
  • [10] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979