Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest

被引:154
作者
Lusk, CH [1 ]
机构
[1] Univ Concepcion, Dept Bot, Concepcion, Chile
关键词
allocation; gas exchange; leaf area ratio; leaf longevity; relative growth rate;
D O I
10.1007/s00442-002-0974-9
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Most knowledge of the physiological correlates of interspecific variation in shade tolerance derives from studies of first-year seedlings in artificial environments. The present study relates growth, allocation, foliage turnover, biomass distribution and gas exchange traits to low-light survival of large seedlings (20-100 cm tall) of eight temperate rainforest evergreens under field conditions. Taxa for which natural mortality was not observed in low light during the 14-month study are referred to here as "shade-tolerant" species, and those which did die in the shade are referred to as "light-demanding" species. In low light (2-5% canopy openness), shade-tolerant species had slightly lower light compensation points than light-demanders. Light-demanding species had more plastic aboveground allocation patterns, generally allocating proportionally less aboveground biomass to foliage production than shade-tolerant associates in high light (>10% canopy openness), but more in low light. Foliage turnover was generally much slower in shade-tolerant species (10-40% year(-1)) than in light-demanding species (30-190%). As these differences in leaf retention outweighed variation in allocation, shade-tolerant species displayed higher leaf areas at all light levels. Furthermore, all shade-tolerant species gained leaf area in low light during the study period, whereas light-demanding taxa showed leaf area declines. Higher leaf area ratios, plus differences in light compensation points, indicate that large seedlings of shade-tolerant evergreens enjoy net carbon gain advantages over light-demanding associates in low light. However, minimal growth rate differences in low light imply higher storage allocation in shade-tolerant species. This study provides a rather different picture from that which has emerged from recent reviews of first-year seedling data, illustrating the long-term consequences of foliage turnover differences for biomass distribution, and suggesting that shade tolerance in juvenile evergreen trees is associated with a suite of traits which enhance net carbon gain, but not growth, in low light. Accumulation of a large foliage area through long leaf retention times is probably a key mechanism enhancing low-light carbon gain in evergreens.
引用
收藏
页码:188 / 196
页数:9
相关论文
共 29 条
[1]  
ALMEYDA E, 1958, RECOPILATION DATOS C
[2]   Biomass allocation and light partitioning among dominant and subordinate individuals in Xanthium canadense stands [J].
Anten, NPR ;
Hirose, T .
ANNALS OF BOTANY, 1998, 82 (05) :665-673
[3]   TREE SPECIES REGENERATION IN A MID-ELEVATION, TEMPERATE RAIN-FOREST IN ISLA-DE-CHILOE, CHILE [J].
ARMESTO, JJ ;
FUENTES, ER .
VEGETATIO, 1988, 74 (2-3) :151-159
[4]   LIGHT REQUIREMENTS OF NEOTROPICAL TREE SEEDLINGS - A COMPARATIVE-STUDY OF GROWTH AND SURVIVAL [J].
AUGSPURGER, CK .
JOURNAL OF ECOLOGY, 1984, 72 (03) :777-795
[5]  
BAZZA FA, 1979, ANNU REV ECOL SYST, V10, P287
[6]   COMPARATIVE PHOTOSYNTHESIS OF SUN AND SHADE PLANTS [J].
BOARDMAN, NK .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1977, 28 :355-377
[7]  
Chazdon R. L., 1988, Advances in Ecological Research, V18, P1, DOI 10.1016/S0065-2504(08)60179-8
[8]   RESOURCE AVAILABILITY AND PLANT ANTIHERBIVORE DEFENSE [J].
COLEY, PD ;
BRYANT, JP ;
CHAPIN, FS .
SCIENCE, 1985, 230 (4728) :895-899
[9]  
DONOSO C, 1981, ECOLOGIA FORESTAL
[10]   ADAPTATION TO SUN AND SHADE - A WHOLE-PLANT PERSPECTIVE [J].
GIVNISH, TJ .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1988, 15 (1-2) :63-92