On Asian option pricing for NIG Levy processes

被引:34
作者
Albrecher, H [1 ]
Predota, M [1 ]
机构
[1] Graz Univ Technol, Dept Math, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
normal inverse Gaussian distribution; Esscher transform; comonotonicity;
D O I
10.1016/j.cam.2004.01.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive approximations and bounds for the Esscher price of European-style arithmetic and geometric average options. The asset price process is assumed to be of exponential Levy type with normal inverse Gaussian (NIG) distributed log-retums. Numerical illustrations of the accuracy of these bounds as well as approximations and comparisons of the NIG average option prices with the corresponding Black-Scholes prices are given. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 168
页数:16
相关论文
共 27 条
  • [1] Abramowitz M, 1968, HDB MATH FUNCTIONS
  • [2] Barndorff-Nielsen O.E., 1997, Finance and Stochastics, V2, P41, DOI DOI 10.1007/S007800050032
  • [3] BARNDORFFNIELSE.OE, 1995, FINANCE STOCH
  • [4] EXPONENTIALLY DECREASING DISTRIBUTIONS FOR LOGARITHM OF PARTICLE-SIZE
    BARNDORFFNIELSEN, O
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 353 (1674): : 401 - 419
  • [5] Normal inverse Gaussian distributions and stochastic volatility modelling
    BarndorffNielsen, OE
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (01) : 1 - 13
  • [6] BUHLMANN H, 1996, CWI Q, V9, P291
  • [7] CHERNY A, 2001, 200133 U AARHUS
  • [8] The concept of comonotonicity in actuarial science and finance: theory
    Dhaene, J
    Denuit, A
    Goovaerts, MJ
    Kaas, R
    Vyncke, D
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2002, 31 (01) : 3 - 33
  • [9] Eberlein E, 2001, LEVY PROCESSES: THEORY AND APPLICATIONS, P319
  • [10] Eberlein E., 1995, BERNOULLI, V1, P281, DOI [DOI 10.2307/3318481, 10.2307/3318481]