Angular momentum conservation for dynamical black holes

被引:36
作者
Hayward, Sean A. [1 ]
机构
[1] Shanghai Normal Univ, Ctr Astrophys, Shanghai 200234, Peoples R China
关键词
D O I
10.1103/PhysRevD.74.104013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form, encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular momentum of a general black hole in terms of angular momentum densities of matter and gravitational radiation. This identifies the transverse-normal block of an effective gravitational-radiation energy tensor, whose normal-normal block was recently identified in a corresponding energy conservation law. Angular momentum and energy are dual, respectively, to the axial vector and a previously identified vector, the conservation equations taking the same form. Including charge conservation, the three conserved quantities yield definitions of an effective energy, electric potential, angular velocity and surface gravity, satisfying a dynamical version of the so-called first law of black-hole mechanics. A corresponding zeroth law holds for null trapping horizons, resolving an ambiguity in taking the null limit.
引用
收藏
页数:12
相关论文
共 48 条
[1]   Local existence of dynamical and trapping horizons - art. no. 111101 [J].
Andersson, L ;
Mars, M ;
Simon, W .
PHYSICAL REVIEW LETTERS, 2005, 95 (11)
[2]   Generic isolated horizons and their applications [J].
Ashtekar, A ;
Beetle, C ;
Dreyer, O ;
Fairhurst, S ;
Krishnan, B ;
Lewandowski, J ;
Wisniewski, J .
PHYSICAL REVIEW LETTERS, 2000, 85 (17) :3564-3567
[3]   Dynamical horizons and their properties [J].
Ashtekar, A ;
Krishnan, B .
PHYSICAL REVIEW D, 2003, 68 (10)
[4]   Dynamical horizons: Energy, angular momentum, fluxes, and balance laws [J].
Ashtekar, A ;
Krishnan, B .
PHYSICAL REVIEW LETTERS, 2002, 89 (26) :1-261101
[5]   Geometry of generic isolated horizons [J].
Ashtekar, A ;
Beetle, C ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (06) :1195-1225
[6]   Mechanics of rotating isolated horizons [J].
Ashtekar, A ;
Beetle, C ;
Lewandowski, J .
PHYSICAL REVIEW D, 2001, 64 (04)
[7]   Isolated horizons: a generalization of black hole mechanics [J].
Ashtekar, A ;
Beetle, C ;
Fairhurst, S .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (02) :L1-L7
[8]   Mechanics of isolated horizons [J].
Ashtekar, A ;
Beetle, C ;
Fairhurst, S .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (02) :253-298
[9]   Isolated horizons: Hamiltonian evolution and the first law [J].
Ashtekar, A ;
Fairhurst, S ;
Krishnan, B .
PHYSICAL REVIEW D, 2000, 62 (10)
[10]  
Ashtekar A, 2005, ADV THEOR MATH PHYS, V9, P1