WRI1 is required for seed germination and seedling establishment

被引:107
作者
Cernac, Alex
Andre, Carl
Hoffmann-Benning, Susanne
Benning, Christoph [1 ]
机构
[1] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
[3] Michigan State Univ, US Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA
关键词
D O I
10.1104/pp.106.079574
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Storage compound accumulation during seed development prepares the next generation of plants for survival. Therefore, processes involved in the regulation and synthesis of storage compound accumulation during seed development bear relevance to germination and seedling establishment. The wrinkled1 (wri1) mutant of Arabidopsis (Arabidopsis thaliana) is impaired in seed oil accumulation. The WRI1 gene encodes an APETALA2/ethylene-responsive element-binding protein transcription factor involved in the control of metabolism, particularly glycolysis, in the developing seeds. Here we investigate the role of this regulatory factor in seed germination and seedling establishment by comparing the wri1-1 mutant, transgenic lines expressing the WRI1 wild-type cDNA in the wri1-1 mutant background, and the wild type. Plants altered in the expression of the WRI1 gene showed different germination responses to the growth factor abscisic acid (ABA), sugars, and fatty acids provided in the medium. Germination of the mutant was more sensitive to ABA, sugars, and osmolites, an effect that was alleviated by increased WRI1 expression in transgenic lines. The expression of ABA-responsive genes AtEM6 and ABA-insensitive 3 (ABI3) was increased in the wri1-1 mutant. Double-mutant analysis between abi3-3 and wri1-1 suggested that WRI1 and ABI3, a transcription factor mediating ABA responses in seeds, act in parallel pathways. Addition of 2-deoxyglucose inhibited seed germination, but did so less in lines overexpressing WRI1. Seedling establishment was decreased in the wri1-1 mutant but could be alleviated by sucrose. Apart from a possible signaling role in germination, sugars in the medium were required as building blocks and energy supply during wri1-1 seedling establishment.
引用
收藏
页码:745 / 757
页数:13
相关论文
共 61 条
[1]  
Arenas-Huertero F, 2000, GENE DEV, V14, P2085
[2]   Three genes that affect sugar sensing (Abscisic Acid Insensitive 4, Abscisic Acid Insensitive 5, and Constitutive Triple Response 1) are differentially regulated by glucose in arabidopsis [J].
Arroyo, A ;
Bossi, F ;
Finkelstein, RR ;
León, P .
PLANT PHYSIOLOGY, 2003, 133 (01) :231-242
[3]   Trehalose metabolism and glucose sensing in plants [J].
Avonce, N ;
Leyman, B ;
Thevelein, J ;
Iturriaga, G .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 :276-279
[4]   The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling [J].
Avonce, N ;
Leyman, B ;
Mascorro-Gallardo, JO ;
Van Dijck, P ;
Thevelein, JM ;
Iturriaga, G .
PLANT PHYSIOLOGY, 2004, 136 (03) :3649-3659
[5]   The role of the cell cycle machinery in resumption of postembryonic development [J].
Barrôco, RM ;
Van Poucke, K ;
Bergervoet, JHW ;
De Veylder, L ;
Groot, SPC ;
Inzé, D ;
Engler, G .
PLANT PHYSIOLOGY, 2005, 137 (01) :127-140
[6]   An integrated overview of seed development in Arabidopsis thaliana ecotype WS [J].
Baud, S ;
Boutin, JP ;
Miquel, M ;
Lepiniec, L ;
Rochat, C .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2002, 40 (02) :151-160
[7]   Seed germination and dormancy [J].
Bewley, JD .
PLANT CELL, 1997, 9 (07) :1055-1066
[8]   The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth [J].
Brocard-Gifford, I ;
Lynch, TJ ;
Garcia, ME ;
Malhotra, B ;
Finkelstein, RR .
PLANT CELL, 2004, 16 (02) :406-421
[9]   WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis [J].
Cernac, A ;
Benning, C .
PLANT JOURNAL, 2004, 40 (04) :575-585
[10]   The role of the Arabidopsis ELD1 gene in cell development and photomorphogenesis in darkness [J].
Cheng, JC ;
Lertpiriyapong, K ;
Wang, S ;
Sung, ZR .
PLANT PHYSIOLOGY, 2000, 123 (02) :509-520