Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389

被引:215
作者
Kuznetsov, G
Towle, MJ
Cheng, HS
Kawamura, T
TenDyke, K
Liu, D
Kishi, Y
Yu, MJ
Littlefield, BA
机构
[1] Eisai Res Inst, Dept Candidate Assessment & In Vitro Technol, Andover, MA 01810 USA
[2] Eisai Res Inst, Dept Life Sci, Andover, MA 01810 USA
[3] Eisai Res Inst, Dept Lead Optimizat, Andover, MA 01810 USA
[4] Eisai Res Inst, Dept Sci Adm, Andover, MA 01810 USA
[5] Eisai Res Inst, Advisory Board, Andover, MA 01810 USA
[6] Eisai & Co Ltd, Tsukuba Res Labs, Discovery Res Labs 2, Tsukuba, Ibaraki 30026, Japan
关键词
D O I
10.1158/0008-5472.CAN-04-1169
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
E7389, a macrocyclic ketone analog of the marine natural product halichondrin B, currently is undergoing clinical trials for cancer. This fully synthetic agent exerts its highly potent in vitro and in vivo anticancer effects via tubulin-based antimitotic mechanisms, which are similar or identical to those. of parental halichondrin B. In an attempt to understand the impressive potency of E7389 in animal models of human cancer, its ability to induce apoptosis following prolonged mitotic blockage was evaluated. Treatment of U937 human histiocytic lymphoma cells with E7389 led to time-dependent collection of cells in the G(2)-M phase of the cell cycle, beginning as early as 2 h and becoming maximal by 12 h. Increased numbers of hypodiploid events were seen beginning at 12 h, suggesting initiation of apoptosis after prolonged E7389-induced mitotic blockage. The identity of hypodiploid events as apoptotic cells under these conditions was confirmed by two additional morphologic criteria: green to orange/yellow shifts on acridine orange/ethidium bromide staining, and cell surface annexin V binding as assessed by flow cytometry. Several biochemical correlates of apoptosis also were seen following E7389 treatment, including phosphorylation of the antiapoptotic protein Bcl-2, cytochrome c release from mitochondria, proteolytic activation of caspase-3 and -9, and cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase (PARP). In LNCaP human prostate cancer cells, treatment with E7389 also led to generation of hypodiploid cells, activation of caspase-3 and -9, and appearance of cleaved PARP, indicating that E7389 can activate cellular apoptosis pathways under anchorage-independent and -dependent cell culture conditions. These results show that prolonged mitotic blockage by E7389 can lead to apoptotic cell death of human cancer cells in vitro and can provide a mechanistic basis for the significant in vivo anticancer efficacy of E7389.
引用
收藏
页码:5760 / 5766
页数:7
相关论文
共 47 条
[1]   TOTAL SYNTHESIS OF HALICHONDRIN-B AND NORHALICHONDRIN-B [J].
AICHER, TD ;
BUSZEK, KR ;
FANG, FG ;
FORSYTH, CJ ;
JUNG, SH ;
KISHI, Y ;
MATELICH, MC ;
SCOLA, PM ;
SPERO, DM ;
YOON, SK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (08) :3162-3164
[2]  
[Anonymous], [No title captured], Patent No. 5436238
[3]  
BAI R, 1991, J BIOL CHEM, V266, P15882
[4]  
BAI RL, 1993, MOL PHARMACOL, V44, P757
[5]   Cell cycle perturbations and apoptosis induced by isohomohalichondrin B (IHB), a natural marine compound [J].
Bergamaschi, D ;
Ronzoni, S ;
Taverna, S ;
Faretta, M ;
De Feudis, P ;
Faircloth, G ;
Jimeno, J ;
Erba, E ;
D'Incalci, M .
BRITISH JOURNAL OF CANCER, 1999, 79 (02) :267-277
[6]  
BLAGOSKLONNY MV, 1995, CANCER RES, V55, P4623
[7]   Paclitaxel-induced FasL-independent apoptosis and slow (non-apoptotic) cell death [J].
Blagosklonny, MV ;
Robey, R ;
Sheikh, MS ;
Fojo, T .
CANCER BIOLOGY & THERAPY, 2002, 1 (02) :113-117
[8]   Unwinding the loop of Bcl-2 phosphorylation [J].
Blagosklonny, MV .
LEUKEMIA, 2001, 15 (06) :869-874
[9]  
Blagosklonny MV, 1997, CANCER RES, V57, P130
[10]  
Blagosklonny MV, 2000, CANCER RES, V60, P3425