Geometry of quantum statistical inference

被引:49
作者
Brody, DC
Hughston, LP
机构
[1] MERRILL LYNCH INT,LONDON EC2Y 9LY,ENGLAND
[2] UNIV LONDON KINGS COLL,LONDON WC2R 2LS,ENGLAND
关键词
D O I
10.1103/PhysRevLett.77.2851
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An efficient geometric formulation of the problem of parameter estimation is developed, based on Hilbert space geometry. This theory, which allows for a transparent transition between classical and quantum statistical inference, is then applied to the analysis of exponential families of distributions (of relevance to statistical mechanics) and quantum mechanical evolutions. The extension to quantum theory is achieved by the introduction of a complex structure on the given real Hilbert space. We find a set of higher order corrections to the parameter estimation variance lower bound, which are potentially important in quantum mechanics, where these corrections appear as modifications to Heisenberg uncertainty relations for the determination of the parameter.
引用
收藏
页码:2851 / 2854
页数:4
相关论文
共 18 条
[1]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[2]  
[Anonymous], EXPO MATH
[3]  
ASHTEKAR A, 1995, AIP C P, V342
[4]   THE ROLE OF DIFFERENTIAL GEOMETRY IN STATISTICAL-THEORY [J].
BARNDORFFNIELSEN, OE ;
COX, DR ;
REID, N .
INTERNATIONAL STATISTICAL REVIEW, 1986, 54 (01) :83-96
[5]  
Bhattacharyya A, 1947, SANKHYA, V8, P201
[6]  
Bhattacharyya A, 1948, SANKHYA, V8, P315
[7]  
Bhattacharyya A, 1946, SANKHYA, V8, P1
[8]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[9]   GEOMETRICAL ASPECTS OF STATISTICAL-MECHANICS [J].
BRODY, D ;
RIVIER, N .
PHYSICAL REVIEW E, 1995, 51 (02) :1006-1011
[10]   FURTHER COMMENTS ON SOME COMMENTS ON A PAPER BY BRADLEY EFRON [J].
DAWID, AP .
ANNALS OF STATISTICS, 1977, 5 (06) :1249-1249