Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries

被引:146
作者
Veeraraghavan, B
Paul, J
Haran, B
Popov, B [1 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA
[2] Brown Univ, Dept Chem Engn, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
polypyrrole; irreversible capacity; anode material; lithium-ion batteries;
D O I
10.1016/S0378-7753(02)00105-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pyrrole was polymerized onto commercial SFG10 graphite by in situ polymerization technique. Polymerization decreases the initial irreversible capacity loss of the graphite anode, The decrease in the irreversible capacity loss is due to the reduction in the thickness of the solid electrolyte interface (SEI) layer formed. PPy/C (7.8%) gives the optimum performance based on the irreversible capacity loss and the discharge capacity of the composite. The composite material has been studied for specific discharge capacity, coulombic efficiency, rate capability and cycle life using a variety of electrochemical methods. The composite SFG10 graphite possess good reversibility, higher coulombic efficiency, good rate capability and better cycle life than the bare SFG10 graphite. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:377 / 387
页数:11
相关论文
共 27 条
[1]   THE CATHODIC DECOMPOSITION OF PROPYLENE CARBONATE IN LITHIUM BATTERIES [J].
ARAKAWA, M ;
YAMAKI, JI .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 219 (1-2) :273-280
[2]  
Armand M. B., 1980, Materials for Advanced Batteries. Proceedings of a NATO Symposium on Materials for Advanced Batteries, P145
[3]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[4]   Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Teller, H ;
Markovsky, B ;
Salitra, G ;
Heider, U ;
Heider, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3024-3034
[5]   INORGANIC FILM-FORMING ELECTROLYTE ADDITIVES IMPROVING THE CYCLING BEHAVIOR OF METALLIC LITHIUM ELECTRODES AND THE SELF-DISCHARGE OF CARBON LITHIUM ELECTRODES [J].
BESENHARD, JO ;
WAGNER, MW ;
WINTER, M ;
JANNAKOUDAKIS, AD ;
JANNAKOUDAKIS, PD ;
THEODORIDOU, E .
JOURNAL OF POWER SOURCES, 1993, 44 (1-3) :413-420
[6]   A metal-free polypyrrole graphite secondary battery with an anion shuttle mechanism [J].
Boinowitz, T ;
Suden, GT ;
Tormin, U ;
Krohn, H ;
Beck, F .
JOURNAL OF POWER SOURCES, 1995, 56 (02) :179-187
[7]   Effect of surface structure on the irreversible capacity of various graphitic carbon electrodes [J].
Chung, GC ;
Jun, SH ;
Lee, KY ;
Kim, MH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (05) :1664-1671
[8]  
CHUSID O, 1993, J POWER SOURCES, V43, P47, DOI 10.1016/0378-7753(93)80101-T
[9]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[10]   New electrolyte system for Li-ion battery [J].
EinEli, Y ;
Thomas, SR ;
Koch, VR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (09) :L195-L197