ATP-sensitive potassium channels: Diverse functions in the central nervous system

被引:17
作者
Freedman, JE [1 ]
Lin, YJ [1 ]
机构
[1] NORTHEASTERN UNIV, DEPT PHARMACEUT SCI, BOSTON, MA 02115 USA
关键词
potassium channels; patch-clamp; sulfonylureas; excitotoxicity; satiety; dopamine;
D O I
10.1177/107385849600200309
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
ATP-sensitive potassium channels open when cytoplasmic levels of ATP drop, thus linking membrane potential to the metabolic state of the cell. Cloning studies have suggested that these channels are related structurally to the inward rectifier family of potassium channels, with two putative membrane-spanning regions. Sulfonylurea drugs, which are used in the treatment of diabetes, inhibit these channels by binding to an associated membrane protein, Other drugs, including some vasodilators, activate ATP-sensitive potassium channels. Diverse neurotransmitter and hormone receptors can modulate these channels, in some cases through interactions with guanyl nucleotide binding proteins. There appear to be multiple subtypes of these channels, differing in electrical properties as well as in drug sensitivities. In the brain, these channels appear to play a role in mediating satiety after feeding. They also function in neurons to protect against excitotoxicity, by counteracting the membrane depolarization associated with metabolic stress. Brain dopamine receptors appear to modulate a novel subtype of ATP-sensitive potassium channel. The association of dopamine receptors with a mechanism involved in protection against neurodegeneration may have implications for the causes of diseases in which dopaminergic regions of brain undergo structural changes, possibly including schizophrenia.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 84 条
[1]   CLONING OF THE BETA-CELL HIGH-AFFINITY SULFONYLUREA RECEPTOR - A REGULATOR OF INSULIN-SECRETION [J].
AGUILARBRYAN, L ;
NICHOLS, CG ;
WECHSLER, SW ;
CLEMENT, JP ;
BOYD, AE ;
GONZALEZ, G ;
HERRERASOSA, H ;
NGUY, K ;
BRYAN, J ;
NELSON, DA .
SCIENCE, 1995, 268 (5209) :423-426
[2]   REGULATION OF ION CHANNELS BY ABC TRANSPORTERS THAT SECRETE ATP [J].
ALAWQATI, Q .
SCIENCE, 1995, 269 (5225) :805-806
[3]   DOPAMINE-INDUCED PROTECTION OF STRIATAL NEURONS AGAINST KAINATE RECEPTOR-MEDIATED GLUTAMATE CYTOTOXICITY IN-VITRO [J].
AMANO, T ;
UJIHARA, H ;
MATSUBAYASHI, H ;
SASA, M ;
YOKOTA, T ;
TAMURA, Y ;
AKAIKE, A .
BRAIN RESEARCH, 1994, 655 (1-2) :61-69
[4]   ABNORMAL EXPRESSION OF 2 MICROTUBULE-ASSOCIATED PROTEINS (MAP2 AND MAP5) IN SPECIFIC SUBFIELDS OF THE HIPPOCAMPAL-FORMATION IN SCHIZOPHRENIA [J].
ARNOLD, SE ;
LEE, VMY ;
GUR, RE ;
TROJANOWSKI, JQ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (23) :10850-10854
[5]   THE SULFONYLUREA RECEPTOR [J].
ASHCROFT, SJH ;
ASHCROFT, FM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1175 (01) :45-49
[6]   PROPERTIES AND FUNCTIONS OF ATP-SENSITIVE K-CHANNELS [J].
ASHCROFT, SJH ;
ASHCROFT, FM .
CELLULAR SIGNALLING, 1990, 2 (03) :197-214
[7]   RETRACTED: CLONING AND FUNCTIONAL EXPRESSION OF A RAT-HEART K-ATP CHANNEL (RETRACTED ARTICLE. SEE VOL 378, PG 792, 1995) [J].
ASHFORD, MLJ ;
BOND, CT ;
BLAIR, TA ;
ADELMAN, JP .
NATURE, 1994, 370 (6489) :456-459
[8]   GALANIN AND GLIBENCLAMIDE MODULATE THE ANOXIC RELEASE OF GLUTAMATE IN RAT CA3 HIPPOCAMPAL-NEURONS [J].
BENARI, Y .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1990, 2 (01) :62-68
[9]   ACTIVATORS OF ATP-SENSITIVE K+ CHANNELS REDUCE ANOXIC DEPOLARIZATION IN CA3 HIPPOCAMPAL-NEURONS [J].
BENARI, Y ;
KRNJEVIC, K ;
CREPEL, V .
NEUROSCIENCE, 1990, 37 (01) :55-60
[10]  
BENES FM, 1995, NEUROSCIENTIST, V1, P104, DOI [10.1177/107385849500100207, DOI 10.1177/107385849500100207]