A plasma analogy and Berry matrices for non-abelian quantum Hall states

被引:48
作者
Gurarie, V [1 ]
Nayak, C [1 ]
机构
[1] UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0550-3213(97)00612-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present an approach to the computation of the nonabelian statistics of quasiholes in quantum Hall states, such as the Pfaffian state, whose wavefunctions are related to the conformal blocks of minimal model conformal field theories. We use the Coulomb gas construction of these conformal field theories to formulate a plasma analogy for the quantum Hall states, A number of properties of the Pfaffian state follow immediately, including the Berry phases, which demonstrate the quasiholes' fractional charge, the abelian statistics of the two-quasihole state, and equal-time ground state correlation functions. The non-abelian statistics of multi-quasihole states follows from an additional assumption. (C) 1997 Elsevier Science E.V.
引用
收藏
页码:685 / 694
页数:10
相关论文
共 19 条
[1]   FRACTIONAL STATISTICS AND THE QUANTUM HALL-EFFECT [J].
AROVAS, D ;
SCHRIEFFER, JR ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1984, 53 (07) :722-723
[2]   MANY-BODY SYSTEMS WITH NON-ABELIAN STATISTICS [J].
BLOK, B ;
WEN, XG .
NUCLEAR PHYSICS B, 1992, 374 (03) :615-646
[3]   CONFORMAL ALGEBRA AND MULTIPOINT CORRELATION-FUNCTIONS IN 2D STATISTICAL-MODELS [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1984, 240 (03) :312-348
[4]  
DOTSENKO VS, 1985, NUCL PHYS B, V251, P3691
[5]   BRST APPROACH TO MINIMAL MODELS [J].
FELDER, G .
NUCLEAR PHYSICS B, 1989, 317 (01) :215-236
[6]   OFF-DIAGONAL LONG-RANGE ORDER, OBLIQUE CONFINEMENT, AND THE FRACTIONAL QUANTUM HALL-EFFECT [J].
GIRVIN, SM ;
MACDONALD, AH .
PHYSICAL REVIEW LETTERS, 1987, 58 (12) :1252-1255
[7]  
GURARIE V, IASSNSHEP975
[9]   QUANTUM KAC-MOODY SYMMETRY IN INTEGRABLE FIELD-THEORIES [J].
MATHUR, SD .
NUCLEAR PHYSICS B, 1992, 369 (1-2) :433-460
[10]   NONABELIONS IN THE FRACTIONAL QUANTUM HALL-EFFECT [J].
MOORE, G ;
READ, N .
NUCLEAR PHYSICS B, 1991, 360 (2-3) :362-396