Identification of interdependent signals required for anterograde traffic of the ATP-binding cassette transporter protein Yor1p

被引:20
作者
Epping, EA
Moye-Rowley, WS
机构
[1] Univ Iowa, Dept Physiol & Biophys, Iowa City, IA 52242 USA
[2] Univ Iowa, Mol Biol PhD Program, Iowa City, IA 52242 USA
关键词
D O I
10.1074/jbc.M202987200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The plasma membrane ATP-binding cassette (ABC) transporter Yor1p mediates oligomycin resistance in Saccharomyces cerevisiae. Its protein sequence places it in the multidrug resistance protein/cystic fibrosis transmembrane conductance regulator subfamily of ABC transporters. A key regulatory step in the biogenesis of this family of ABC transporter proteins is at the level of transport from the endoplasmic reticulum (ER) on through the secretory pathway. To explore the protein sequence requirements for Yor1p to move from the ER to its site of function at the plasma membrane, a series of truncation and alanine replacement mutations were constructed in Yor1p. This analysis detected two sequence motifs similar to the DXE element that has recently been found in other proteins that exit the ER. Loss of the N-terminal DXE element eliminated function of the protein, whereas loss of the C-terminal element only slightly reduced function of the resulting mutant Yor1p. Strikingly, although both of the single mutant proteins were stable, production of the double mutant caused dramatic destabilization of Yor1p. These data suggest that this large polytopic membrane protein requires multiple signals for normal forward trafficking, and elimination of this information may cause the mutant protein to be transferred to a degradative fate.
引用
收藏
页码:34860 / 34869
页数:10
相关论文
共 50 条
[1]   Membrane topology and glycosylation of the human multidrug resistance-associated protein [J].
Bakos, E ;
Hegedus, T ;
Hollo, Z ;
Welker, E ;
Tusnady, GE ;
Zaman, GJR ;
Flens, MJ ;
Varadi, A ;
Sarkadi, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (21) :12322-12326
[2]  
Bakos É, 2000, J CELL SCI, V113, P4451
[3]   Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain [J].
Bakos, E ;
Evers, R ;
Szakács, G ;
Tusnády, GE ;
Welker, E ;
Szabó, K ;
de Haas, M ;
van Deemter, L ;
Borst, P ;
Váradi, A ;
Sarkadi, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :32167-32175
[4]   Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance [J].
Bauer, BE ;
Wolfger, H ;
Kuchler, K .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1999, 1461 (02) :217-236
[5]   COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments [J].
Benharouga, M ;
Haardt, M ;
Kartner, N ;
Lukacs, GL .
JOURNAL OF CELL BIOLOGY, 2001, 153 (05) :957-970
[6]   The multidrug resistance protein family [J].
Borst, P ;
Evers, R ;
Kool, M ;
Wijnholds, J .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1999, 1461 (02) :347-357
[7]   Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes [J].
Carvajal, E ;
vandenHazel, HB ;
CybularzKolaczkowska, A ;
Balzi, E ;
Goffeau, A .
MOLECULAR AND GENERAL GENETICS, 1997, 256 (04) :406-415
[8]   DEFECTIVE INTRACELLULAR-TRANSPORT AND PROCESSING OF CFTR IS THE MOLECULAR-BASIS OF MOST CYSTIC-FIBROSIS [J].
CHENG, SH ;
GREGORY, RJ ;
MARSHALL, J ;
PAUL, S ;
SOUZA, DW ;
WHITE, GA ;
ORIORDAN, CR ;
SMITH, AE .
CELL, 1990, 63 (04) :827-834
[9]   OVEREXPRESSION OF A TRANSPORTER GENE IN A MULTIDRUG-RESISTANT HUMAN LUNG-CANCER CELL-LINE [J].
COLE, SPC ;
BHARDWAJ, G ;
GERLACH, JH ;
MACKIE, JE ;
GRANT, CE ;
ALMQUIST, KC ;
STEWART, AJ ;
KURZ, EU ;
DUNCAN, AMV ;
DEELEY, RG .
SCIENCE, 1992, 258 (5088) :1650-1654
[10]   The multidrug resistance-associated protein (MRP) subfamily (Yrs1/Yor1) of Saccharomyces cerevisiae is important for the tolerance to a broad range of organic anions [J].
Cui, ZF ;
Hirata, D ;
Tsuchiya, E ;
Osada, H ;
Miyakawa, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (25) :14712-14716