The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequenceswithin the origin-proximal region of the linear chromosome

被引:75
作者
Jakimowicz, D
Chater, K
Zakrzewska-Czerwínska, J
机构
[1] Polish Acad Sci, Ludwik Hirszfeld Inst Immunol & Expt Therapy, PL-53114 Wroclaw, Poland
[2] John Innes Ctr Plant Sci Res, Norwich NR4 7UH, Norfolk, England
关键词
D O I
10.1046/j.1365-2958.2002.03102.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mycelial prokaryote Streptomyces coelicolor A3(2)possesses a large linear chromosome (8.67 Mb) with a centrally located origin of replication (oriC). Recently, chromosome partitioning genes (parA and parB) and putative ParB binding sites (parS sequences) were identified in its genome. The S. coelicolor chromosome contains more parS sequences than any other bacterial chromosome characterized so far. Twenty of the 24 parS sequences are densely packed within a relatively short distance (approximate to 200 kb) around oriC. A series of in vitro and in vivo experiments showed that S. coelicolor ParB protein interacts specifically with the parS sequences, albeit with a rather low affinity. Our results suggested that the binding of ParB is not only determined by the parS sequence, but also by the location of target DNA close to oriC. The unusually high number and close proximity to each other of the parS sites, together with in vivo and in vitro evidence that multiple ParB molecules may assemble along the DNA from an initial ParB- parS complex, suggest that a large DNA segment around the replication origin may forma massive nucleoprotein complex as part of the replication-partitioning cycle.
引用
收藏
页码:1365 / 1377
页数:13
相关论文
共 40 条
[1]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[2]   The bacterial ParA-ParB partitioning proteins [J].
Bignell, C ;
Thomas, CM .
JOURNAL OF BIOTECHNOLOGY, 2001, 91 (01) :1-34
[3]   Stoichiometry of P1 plasmid partition complexes [J].
Bouet, JY ;
Surtees, JA ;
Funnell, BE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (11) :8213-8219
[4]  
Flärdh K, 1999, MICROBIOL-SGM, V145, P2229, DOI 10.1099/00221287-145-9-2229
[5]   Plasmid and chromosome partitioning: surprises from phylogeny [J].
Gerdes, K ;
Moller-Jensen, J ;
Jensen, RB .
MOLECULAR MICROBIOLOGY, 2000, 37 (03) :455-466
[6]   Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning [J].
Glaser, P ;
Sharpe, ME ;
Raether, B ;
Perego, M ;
Ohlsen, K ;
Errington, J .
GENES & DEVELOPMENT, 1997, 11 (09) :1160-1168
[7]   The parAB gene products of Pseudomonas putida exhibit partition activity in both P-putida and Escherichia coli [J].
Godfrin-Estevenon, AM ;
Pasta, F ;
Lane, D .
MOLECULAR MICROBIOLOGY, 2002, 43 (01) :39-49
[8]   Chromosome and low copy plasmid segregation in E-coli: Visual evidence for distinct mechanisms [J].
Gordon, GS ;
Sitnikov, D ;
Webb, CD ;
Teleman, A ;
Straight, A ;
Losick, R ;
Murray, AW ;
Wright, A .
CELL, 1997, 90 (06) :1113-1121
[9]   DNA segregation in bacteria [J].
Gordon, GS ;
Wright, A .
ANNUAL REVIEW OF MICROBIOLOGY, 2000, 54 :681-708
[10]   SPO0J IS REQUIRED FOR NORMAL CHROMOSOME SEGREGATION AS WELL AS THE INITIATION OF SPORULATION IN BACILLUS-SUBTILIS [J].
IRETON, K ;
GUNTHER, NW ;
GROSSMAN, AD .
JOURNAL OF BACTERIOLOGY, 1994, 176 (17) :5320-5329