Correlated mutations: Advances and limitations. A study on fusion proteins and on the cohesin-dockerin families

被引:84
作者
Halperin, Inbal
Wolfson, Haim
Nussinov, Ruth
机构
[1] NCI, Ctr Canc Res, Nanobiol Program, Basic Res Program,SAIC Frederick Inc, Frederick, MD 21702 USA
[2] Tel Aviv Univ, Sackler Sch Med, Dept Human Genet & Mol Med, Sackler Inst Mol Med, IL-69978 Tel Aviv, Israel
[3] Tel Aviv Univ, Sch Comp Sci, Fac Exact Sci, IL-69978 Tel Aviv, Israel
关键词
binding site; correlated mutations; residue covariation; fusion proteins; protein-protein interactions;
D O I
10.1002/prot.20933
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Correlated mutations have been repeatedly exploited for intramolecular contact map prediction. Over the last decade these efforts yielded several methods for measuring correlated mutations. Nevertheless, the application of correlated mutations for the prediction of intermolecular interactions has not yet been explored. This gap is due to several obstacles, such as 3D complexes availability, paralog discrimination, and the availability of sequence pairs that are required for inter- but not intramolecular analyses. Here we selected for analysis fusion protein families that bypass some of these obstacles. We find that several correlated mutation measurements yield reasonable accuracy for intramolecular contact map prediction on the fusion dataset. However, the accuracy level drops sharply in intermolecular contacts prediction. This drop in accuracy does not occur always. In the Cohesin-Dockerin family, reasonable accuracy is achieved in the prediction of both intra- and intermolecular contacts. The Cohesin-Dockerin family is well suited for correlated mutation analysis. Because, however, this family constitutes a special case (it has radical mutations, has domain repeats, within each species each Dockerin domain interacts with each Cohesin domain, see below), the successful prediction in this family does not point to a general potential in using correlated mutations for predicting intermolecular contacts. Overall, the results of our study indicate that current methodologies of correlated mutations analysis are not suitable for large-scale intermolecular contact prediction, and thus cannot assist in docking. With current measurements, sequence availability, sequence annotations, and underdeveloped sequence pairing methods, correlated mutations can yield reasonable accuracy only for a handful of families.
引用
收藏
页码:832 / 845
页数:14
相关论文
共 70 条
[1]  
[Anonymous], ELEMENTS INFORM THEO
[2]   Correlations among amino acid sites in bHLH protein domains: An information theoretic analysis [J].
Atchley, WR ;
Wollenberg, KR ;
Fitch, WM ;
Terhalle, W ;
Dress, AW .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (01) :164-178
[3]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[4]   RNA secondary structure and compensatory evolution [J].
Chen, Y ;
Carlini, DB ;
Baines, JF ;
Parsch, J ;
Braverman, JM ;
Tanda, S ;
Stephan, W .
GENES & GENETIC SYSTEMS, 1999, 74 (06) :271-286
[5]   COVARIATION OF RESIDUES IN THE HOMEODOMAIN SEQUENCE FAMILY [J].
CLARKE, ND .
PROTEIN SCIENCE, 1995, 4 (11) :2269-2278
[6]   SOLVENT-ACCESSIBLE SURFACES OF PROTEINS AND NUCLEIC-ACIDS [J].
CONNOLLY, ML .
SCIENCE, 1983, 221 (4612) :709-713
[7]   A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments [J].
Dekker, JP ;
Fodor, A ;
Aldrich, RW ;
Yellen, G .
BIOINFORMATICS, 2004, 20 (10) :1565-1572
[8]   MUSCLE: multiple sequence alignment with high accuracy and high throughput [J].
Edgar, RC .
NUCLEIC ACIDS RESEARCH, 2004, 32 (05) :1792-1797
[9]   Progress in predicting inter-residue contacts of proteins with neural networks and correlated mutations [J].
Fariselli, P ;
Olmea, O ;
Valencia, A ;
Casadio, R .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2001, :157-162
[10]   Prediction of contact maps with neural networks and correlated mutations [J].
Fariselli, P ;
Olmea, O ;
Valencia, A ;
Casadio, R .
PROTEIN ENGINEERING, 2001, 14 (11) :835-843