Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles

被引:24
作者
Dhamala, M [1 ]
Lai, YC
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 05期
关键词
D O I
10.1103/PhysRevE.60.6176
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Chaotic saddles are nonattracting dynamical invariant sets that physically lead to transient chaos. We examine the characterization of the natural measure by unstable periodic orbits for nonhyperbolic chaotic saddles in dissipative dynamical systems. In particular, we compare the natural measure obtained from a long: trajectory on the chaotic saddle to that evaluated from unstable periodic orbits embedded in it. Our systematic computations indicate that the periodic-orbit theory of the natural measure, previously shown to be valid only for hyperbolic chaotic sets, is applicable to nonhyperbolic chaotic saddles as well. [S1063-651X(99)08311-7].
引用
收藏
页码:6176 / 6179
页数:4
相关论文
共 30 条
[1]   CHARACTERIZATION OF UNSTABLE PERIODIC-ORBITS IN CHAOTIC ATTRACTORS AND REPELLERS [J].
BIHAM, O ;
WENZEL, W .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :819-822
[2]  
CHIRIKOV BV, 1984, PHYSICA D, V13, P394
[3]   CONTROLLING NONCHAOTIC NEURONAL NOISE USING CHAOS CONTROL TECHNIQUES [J].
CHRISTINI, DJ ;
COLLINS, JJ .
PHYSICAL REVIEW LETTERS, 1995, 75 (14) :2782-2785
[4]   INVARIANT MEASUREMENT OF STRANGE SETS IN TERMS OF CYCLES [J].
CVITANOVIC, P .
PHYSICAL REVIEW LETTERS, 1988, 61 (24) :2729-2732
[5]   SCALING LAWS FOR INVARIANT-MEASURES ON HYPERBOLIC AND NONHYPERBOLIC ATTRACTORS [J].
GRASSBERGER, P ;
BADII, R ;
POLITI, A .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (1-2) :135-178
[6]   UNSTABLE PERIODIC-ORBITS AND THE DIMENSIONS OF MULTIFRACTAL CHAOTIC ATTRACTORS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1988, 37 (05) :1711-1724
[7]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200
[8]   ORGANIZATION OF CHAOS [J].
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 59 (13) :1377-1380
[9]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[10]   STRANGE SADDLES AND THE DIMENSIONS OF THEIR INVARIANT-MANIFOLDS [J].
HSU, GH ;
OTT, E ;
GREBOGI, C .
PHYSICS LETTERS A, 1988, 127 (04) :199-204