Characterization of large conductance Ca2+-activated K+ channels in cerebellar Purkinje neurons

被引:95
作者
Womack, MD
Khodakhah, K
机构
[1] Yeshiva Univ Albert Einstein Coll Med, Dept Neurosci, Bronx, NY 10461 USA
[2] Univ Colorado, Hlth Sci Ctr, Dept Physiol & Biophys, Denver, CO 80262 USA
关键词
BK channels; excitability; motor coordination; mouse; spontaneous firing;
D O I
10.1046/j.1460-9568.2002.02171.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We investigated the role of large conductance, calcium-activated potassium channels (BK channels) in regulation of the excitability of cerebellar Purkinje neurons. Block of BK channels by iberiotoxin reduced the afterhyperpolarization of spontaneous action potentials in Purkinje neurons in acutely prepared cerebellar slices. To establish the conditions required for activation of BK channels in Purkinje neurons, the dependence of BK channel open probability on calcium concentration and membrane voltage were investigated in excised patches from soma of acutely prepared Purkinje cells. Single channel currents were studied under conditions designed to select for potassium currents and in which voltage-activated currents were largely inactivated. Micromolar calcium concentrations activated channels with a mean single channel conductance of 266 pS. BK channels were activated by both calcium and membrane depolarization, and showed no sign of inactivation. At a given calcium concentration, depolarization over a 60-mV range increased the mean open probability (P-O) from < 0.1 to > 0.8. Increasing the calcium concentration shifted the voltage required for half maximal activation to more hyperpolarized potentials. The apparent affinity of the channels for calcium increased with depolarization. At -60 mV the apparent affinity was approximate to35 muM decreasing to approximate to3 muM at +40 mV. These results suggest that BK channels are unlikely to be activated at resting membrane potentials and calcium concentrations. We tested the hypothesis that Purkinje cell BK channels may be activated by calcium entry during individual action potentials. Significant BK channel activation could be detected when brief action potential-like depolarizations were applied to patches under conditions in which the sole source of calcium was flux across the plasma membrane via the endogenous voltage-gated calcium channels. It is proposed that BK channels regulate the excitability of Purkinje cells by contributing to afterhyperpolarizations and perhaps by shaping individual action potentials.
引用
收藏
页码:1214 / 1222
页数:9
相关论文
共 47 条
[1]   CALCIUM-ACTIVATED POTASSIUM CHANNELS EXPRESSED FROM CLONED COMPLEMENTARY DNAS [J].
ADELMAN, JP ;
SHEN, KZ ;
KAVANAUGH, MP ;
WARREN, RA ;
WU, YN ;
LAGRUTTA, A ;
BOND, CT ;
NORTH, RA .
NEURON, 1992, 9 (02) :209-216
[2]  
Armstrong CE, 1998, J NEUROSCI, V18, P2962
[3]   Rapidly inactivating and non-inactivating calcium-activated potassium currents in frog saccular hair cells [J].
Armstrong, CE ;
Roberts, WM .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 536 (01) :49-65
[4]   MECHANISMS OF OSCILLATORY ACTIVITY IN GUINEA-PIG NUCLEUS-RETICULARIS THALAMI IN-VITRO - A MAMMALIAN PACEMAKER [J].
BAL, T ;
MCCORMICK, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 468 :669-691
[5]   PHOSPHORYLATION AND DEPHOSPHORYLATION MODULATE A CA2+-ACTIVATED K+ CHANNEL IN RAT PEPTIDERGIC NERVE-TERMINALS [J].
BIELEFELDT, K ;
JACKSON, MB .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 475 (02) :241-254
[6]   Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4 [J].
Brenner, R ;
Jegla, TJ ;
Wickenden, A ;
Liu, Y ;
Aldrich, RW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (09) :6453-6461
[7]   Separation of gating properties from permeation and block in mslo large conductance Ca-activated K+ channels [J].
Cox, DH ;
Cui, J ;
Aldrich, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (05) :633-646
[8]   Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels [J].
Cui, J ;
Cox, DH ;
Aldrich, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (05) :647-673
[9]  
De Schutter E, 1998, J NEUROPHYSIOL, V80, P504
[10]   AN ACTIVE MEMBRANE MODEL OF THE CEREBELLAR PURKINJE-CELL .2. SIMULATION OF SYNAPTIC RESPONSES [J].
DESCHUTTER, E ;
BOWER, JM .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 71 (01) :401-419