Mutating the four extracellular cysteines in the chemokine receptor CCR6 reveals their differing roles in receptor trafficking, ligand binding, and signaling

被引:37
作者
Ai, LS [1 ]
Liao, F [1 ]
机构
[1] Acad Sinica, Inst Biomed Sci, Taipei 11529, Taiwan
关键词
D O I
10.1021/bi025855y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CCR6 is the receptor for the chemokine MIP-3alpha/CCL20. Almost all chemokine receptors contain cysteine residues in the N-terminal domain and in the first, second, and third extracellular loops. In this report, we have studied the importance of all cysteine residues in the CCR6 sequence using site-directed mutagenesis and biochemical techniques. Like all G protein-coupled receptors, mutating disulfide bond-forming cysteines in the first (Cys118) and second (Cys197) extracellular loops in CCR6 led to complete elimination of receptor activity, which for CCR6 was also associated with the accumulation of the receptor intracellularly. Although two additional cysteines in the N-terminal region and the third extracellular loop, which are present in almost all chemokine receptors, are presumed to form a disulfide bond, this has not been demonstrated experimentally for any of these receptors. We found that mutating the cysteines in the N-terminal domain (Cys36) and the third extracellular loop (Cys288) neither significantly affected receptor surface expression nor completely abolished receptor function. Importantly, contrary to several previous reports, we demonstrated directly that instead of forming a disulfide bond, the N-terminal cysteine (Cys36) and the third extracellular loop cysteine (Cys288) contain free SH groups. The cysteine residues (Cys36 and Cys288), rather than forming a disulfide bond, may be important per se. We propose that CCR6 forms only a disulfide bond between the first (Cys118) and second (Cys197) extracellular loops, which confines a helical bundle together with the N-terminus adjacent to the third extracellular loop, creating the structural organization critical for ligand binding and therefore for receptor signaling.
引用
收藏
页码:8332 / 8341
页数:10
相关论文
共 48 条
[1]   Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B:: Evidence that directed migration is mediated by βγ dimers released by activation of Gαi-coupled receptors [J].
Arai, H ;
Tsou, CL ;
Charo, IF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14495-14499
[2]   Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC [J].
Baba, M ;
Imai, T ;
Nishimura, M ;
Kakizaki, M ;
Takagi, S ;
Hieshima, K ;
Nomiyama, H ;
Yoshie, O .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (23) :14893-14898
[3]   Human chemokines: An update [J].
Baggiolini, M ;
Dewald, B ;
Moser, B .
ANNUAL REVIEW OF IMMUNOLOGY, 1997, 15 :675-705
[4]   Extracellular cysteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activity [J].
Blanpain, C ;
Lee, B ;
Vakili, J ;
Doranz, BJ ;
Govaerts, C ;
Migeotte, I ;
Sharron, M ;
Dupriez, V ;
Vassart, G ;
Doms, RW ;
Parmentier, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (27) :18902-18908
[5]   Palmitoylation of CCR5 is critical for receptor trafficking and efficient activation of intracellular signaling pathways [J].
Blanpain, C ;
Wittamer, V ;
Vanderwinden, JM ;
Boom, A ;
Renneboog, B ;
Lee, B ;
Le Poul, E ;
El Asmar, L ;
Govaerts, C ;
Vassart, G ;
Doms, RW ;
Parmentier, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23795-23804
[6]   DYNAMIC REGULATION OF G-PROTEIN COUPLED RECEPTOR PALMITOYLATION - POTENTIAL ROLE IN RECEPTOR FUNCTION [J].
BOUVIER, M ;
LOISEL, TP ;
HEBERT, T .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1995, 23 (03) :577-581
[7]   Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (Regulator of G-protein Signaling) family members [J].
Bowman, EP ;
Campbell, JJ ;
Druey, KM ;
Scheschonka, A ;
Kehrl, JH ;
Butcher, EC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (43) :28040-28048
[8]   A NOVEL MULTIGENE FAMILY MAY ENCODE ODORANT RECEPTORS - A MOLECULAR-BASIS FOR ODOR RECOGNITION [J].
BUCK, L ;
AXEL, R .
CELL, 1991, 65 (01) :175-187
[9]   Biology of chemokine and classical chemoattractant receptors: Differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells [J].
Campbell, JJ ;
Qin, SX ;
Bacon, KB ;
Mackay, CR ;
Butcher, EC .
JOURNAL OF CELL BIOLOGY, 1996, 134 (01) :255-266
[10]  
CURTIS CAM, 1989, J BIOL CHEM, V264, P489