Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch

被引:280
作者
Teixeira, Eliangela de M. [2 ]
Pasquini, Daniel [3 ,4 ]
Curvelo, Antonio A. S. [2 ]
Corradini, Elisangela [5 ]
Belgacem, Mohamed N. [1 ]
Dufresne, Alain [1 ]
机构
[1] Grenoble INP Pagora, Int Sch Paper Print Media & Biomat, Grenoble Inst Technol, F-38402 St Martin Dheres, France
[2] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal
[4] Univ Aveiro, Dept Quim, P-3810193 Aveiro, Portugal
[5] Univ Fed Sao Carlos, Dept Mat Engn, BR-13560095 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Cassava bagasse; Thermoplastic starch; Cellulose nanofibrils; Nanocomposites; MECHANICAL-PROPERTIES; PLASTICIZED STARCH; LACTIC-ACID; WHISKERS; NANOCOMPOSITES; RESIDUES; MICROFIBRILS; FIBERS; CRYSTALLINITY; FERMENTATION;
D O I
10.1016/j.carbpol.2009.04.034
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Cellulose cassava bagasse nanofibrils (CBN) were directly extracted from a by-product of the cassava starch (CS) industry, viz. the cassava bagasse (CB), The morphological structure of the ensuing nanoparticles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), presence of other components such as sugars by high performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) experiments. The resulting nanofibrils display a relatively low crystallinity and were found to be around 2-11 nm thick and 360-1700 nm long. These nanofibrils were used as reinforcing nanoparticles in a thermoplastic cassava starch matrix plasticized using either glycerol or a mixture of glycerol/sorbitol (1:1) as plasticizer. Nanocomposite films were prepared by a melting process. The reinforcing effect of the filler evaluated by dynamical mechanical tests (DMA) and tensile tests was found to depend on the nature of the plasticizer employed. Thus, for the glycerol-plasticized matrix-based composites, it was limited especially due to additional plasticization by sugars originating from starch hydrolysis during the acid extraction. This effect was evidenced by the reduction of glass vitreous temperature of starch after the incorporation of nanofibrils in TPSG and by the increase of elongation at break in tensile test. On the other hand, for glycerol/sorbitol plasticized nanocomposites the transcrystallization of amylopectin in nanofibrils surface hindered good performances of CBN as reinforcing agent for thermoplastic cassava starch. The incorporation of cassava bagasse cellulose nanofibrils in the thermoplastic starch matrices has resulted in a decrease of its hydrophilic character especially for glycerol plasticized sample. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:422 / 431
页数:10
相关论文
共 38 条
[1]   Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soy hulls [J].
Alemdar, Ayse ;
Sain, Mohini .
BIORESOURCE TECHNOLOGY, 2008, 99 (06) :1664-1671
[2]   Thermoplastic starch-waxy maize starch nanocrystals nanocomposites [J].
Angellier, H ;
Molina-Boisseau, S ;
Dole, P ;
Dufresne, A .
BIOMACROMOLECULES, 2006, 7 (02) :531-539
[3]   Plasticized starch/tunicin whiskers nanocomposites.: 1.: Structural analysis [J].
Anglès, MN ;
Dufresne, A .
MACROMOLECULES, 2000, 33 (22) :8344-8353
[4]   Plasticized starch/tunicin whiskers nanocomposite materials.: 2.: Mechanical behavior [J].
Anglès, MN ;
Dufresne, A .
MACROMOLECULES, 2001, 34 (09) :2921-2931
[5]   Biodegradable multiphase systems based on plasticized starch:: A review [J].
Avérous, L .
JOURNAL OF MACROMOLECULAR SCIENCE-POLYMER REVIEWS, 2004, C44 (03) :231-274
[6]   A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization [J].
Cherian, Bibin Mathew ;
Pothan, Laly A. ;
Nguyen-Chung, Tham ;
Mennig, Guenter ;
Kottaisamy, M. ;
Thomas, Sabu .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2008, 56 (14) :5617-5627
[7]   Thermoplastic starch-cellulosic fibers composites: preliminary results [J].
Curvelo, AAS ;
de Carvalho, AJF ;
Agnelli, JAM .
CARBOHYDRATE POLYMERS, 2001, 45 (02) :183-188
[8]  
Dufresne A, 2006, J NANOSCI NANOTECHNO, V6, P322, DOI 10.1166/jnn.2006.005
[9]  
Dufresne A, 2000, J APPL POLYM SCI, V76, P2080, DOI 10.1002/(SICI)1097-4628(20000628)76:14<2080::AID-APP12>3.0.CO
[10]  
2-U