Development of HTS power transformers for the 21st century: Waukesha Electric Systems/IGC-SuperPower/RG&E/ORNL SPI collaboration

被引:19
作者
Schwenterly, SW
Mehta, SP
Walker, MS
Jones, RH
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Waukesha Elect Syst, Waukesha, WI 53186 USA
[3] IGC SuperPower, Schenectady, NY 12304 USA
[4] Rochester Gas & Elect Corp, Rochester, NY 14649 USA
来源
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS | 2002年 / 382卷 / 01期
关键词
HTS transformers; electric power applications;
D O I
10.1016/S0921-4534(02)01168-1
中图分类号
O59 [应用物理学];
学科分类号
摘要
The collaboration among Waukesha Electric Systems (WES), IGC-SuperPower (IGC-SP), Rochester Gas & Electric (RG&E), and Oak Ridge National Laboratory (ORNL) is now in Phase II. This is a US DoE cost-shared Superconductivity Partnership Initiative (SPI) Project, with the objective of developing a conceptual design for a commercial 30-MVA superconducting utility power transformer, and furthermore designing and building a prototype 5/10-MVA transformer that will be operated on the utility power grid at the main WES plant in Waukesha, WL The design approach for both of these transformers is to place both the core and cold mass inside the vacuum tank. Commercial cryocoolers are used to cool the superconducting windings below 40 K. This approach avoids the use of expensive non-conducting cryostats. It allows a flexible tradeoff between operating temperature and length of conductor to produce a cost-optimized design with the best currently available conductor. Activities in the participant organizations will be summarized as follows: WES-core cooling and conventional component design, IGC-SP-superconducting coil, coil cooling and lead development and cryogenic suspension, ORNL-AC loss measurements, cryogenic dielectric tests, and cryogenic cooling module design, and RG&E-operational needs and utility perspectives. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 8 条
[1]  
BITTERMAN A, 1997, SUPERCONDUCTOR W MAR, V11, P1
[2]   Development of a 22kV/6.9kV single-phase model for a 3MVA HTS power transformer [J].
Funaki, K ;
Iwakuma, M ;
Kajikawa, K ;
Hara, M ;
Suehiro, J ;
Ito, T ;
Takata, Y ;
Bohno, T ;
Nose, S ;
Konno, M ;
Yagi, Y ;
Maruyama, H ;
Ogata, T ;
Yoshida, S ;
Ohashi, K ;
Kimura, H ;
Tsutsumi, K .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2001, 11 (01) :1578-1581
[3]  
HATA H, 2001, Q REPORT RAILWAY TEC, V42, P121
[4]   Development and test of a 100 kVA superconducting transformer operated at 77 K [J].
Kummeth, P ;
Schlosser, R ;
Massek, P ;
Schmidt, H ;
Albrecht, C ;
Breitfelder, D ;
Neumüller, HW .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2000, 13 (05) :503-505
[5]  
Lee HJ, 2001, IEEE T APPL SUPERCON, V11, P1486, DOI 10.1109/77.920055
[6]   Transforming transformers [J].
Mehta, SP ;
Aversa, N ;
Walker, MS .
IEEE SPECTRUM, 1997, 34 (07) :43-49
[7]  
REIS CT, 2001, P IEEE WINT POW M 20, V2, P432
[8]   Performance of a 1-MVA HTS demonstration transformer [J].
Schwenterly, SW ;
McConnell, BW ;
Demko, JA ;
Fadnek, A ;
Hsu, J ;
List, FA ;
Walker, MS ;
Hazelton, DW ;
Murray, FS ;
Rice, JA ;
Trautwein, CM ;
Shi, X ;
Farrell, RA ;
Bascuñan, J ;
Hintz, RE ;
Mehta, SP ;
Aversa, N ;
Ebert, JA ;
Bednar, BA ;
Neder, DJ ;
McIlheran, AA ;
Michel, PC ;
Nemec, JJ ;
Pleva, EF ;
Swenton, AC ;
Swets, W ;
Longsworth, RC ;
Johnson, RC ;
Jones, RH ;
Nelson, JK ;
Degeneff, RC ;
Salon, SJ .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1999, 9 (02) :680-684