Quantifying uncertainty in genotype calls

被引:42
作者
Carvalho, Benilton S. [1 ]
Louis, Thomas A. [1 ]
Irizarry, Rafael A. [1 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
关键词
OLIGONUCLEOTIDE; NORMALIZATION; EXPLORATION;
D O I
10.1093/bioinformatics/btp624
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Genome-wide association studies (GWAS) are used to discover genes underlying complex, heritable disorders for which less powerful study designs have failed in the past. The number of GWAS has skyrocketed recently with findings reported in top journals and the mainstream media. Microarrays are the genotype calling technology of choice in GWAS as they permit exploration of more than a million single nucleotide polymorphisms (SNPs) simultaneously. The starting point for the statistical analyses used by GWAS to determine association between loci and disease is making genotype calls (AA, AB or BB). However, the raw data, microarray probe intensities, are heavily processed before arriving at these calls. Various sophisticated statistical procedures have been proposed for transforming raw data into genotype calls. We find that variability in microarray output quality across different SNPs, different arrays and different sample batches have substantial influence on the accuracy of genotype calls made by existing algorithms. Failure to account for these sources of variability can adversely affect the quality of findings reported by the GWAS. Results: We developed a method based on an enhanced version of the multi-level model used by CRLMM version 1. Two key differences are that we now account for variability across batches and improve the call-specific assessment of each call. The new model permits the development of quality metrics for SNPs, samples and batches of samples. Using three independent datasets, we demonstrate that the CRLMM version 2 outperforms CRLMM version 1 and the algorithm provided by Affymetrix, Birdseed. The main advantage of the new approach is that it enables the identification of low-quality SNPs, samples and batches.
引用
收藏
页码:242 / 249
页数:8
相关论文
共 20 条
[1]  
Affymetrix, 2007, BRLMM P GEN CALL MET
[2]  
Affymetrix, 2006, BRLMM IMPR GEN CALL
[3]   Inflammation, Hemostasis, and the Risk of Kidney Function Decline in the Atherosclerosis Risk in Communities (ARIC) Study [J].
Bash, Lori D. ;
Erlinger, Thomas P. ;
Coresh, Josef ;
Marsh-Manzi, Jane ;
Folsom, Aaron R. ;
Astor, Brad C. .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2009, 53 (04) :596-605
[4]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[5]   Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data [J].
Carvalho, Benilton ;
Bengtsson, Henrik ;
Speed, Terence P. ;
Irizarry, Rafael A. .
BIOSTATISTICS, 2007, 8 (02) :485-499
[6]   Dynamic model based algorithms for screening and genotyping over 100K SNPs on oligonucleotide microarrays [J].
Di, XJ ;
Matsuzaki, H ;
Webster, TA ;
Hubbell, E ;
Liu, GY ;
Dong, SL ;
Bartell, D ;
Huang, J ;
Chiles, R ;
Yang, G ;
Shen, MM ;
Kulp, D ;
Kennedy, GC ;
Mei, R ;
Jones, KW ;
Cawley, S .
BIOINFORMATICS, 2005, 21 (09) :1958-1963
[7]   A second generation human haplotype map of over 3.1 million SNPs [J].
Frazer, Kelly A. ;
Ballinger, Dennis G. ;
Cox, David R. ;
Hinds, David A. ;
Stuve, Laura L. ;
Gibbs, Richard A. ;
Belmont, John W. ;
Boudreau, Andrew ;
Hardenbol, Paul ;
Leal, Suzanne M. ;
Pasternak, Shiran ;
Wheeler, David A. ;
Willis, Thomas D. ;
Yu, Fuli ;
Yang, Huanming ;
Zeng, Changqing ;
Gao, Yang ;
Hu, Haoran ;
Hu, Weitao ;
Li, Chaohua ;
Lin, Wei ;
Liu, Siqi ;
Pan, Hao ;
Tang, Xiaoli ;
Wang, Jian ;
Wang, Wei ;
Yu, Jun ;
Zhang, Bo ;
Zhang, Qingrun ;
Zhao, Hongbin ;
Zhao, Hui ;
Zhou, Jun ;
Gabriel, Stacey B. ;
Barry, Rachel ;
Blumenstiel, Brendan ;
Camargo, Amy ;
Defelice, Matthew ;
Faggart, Maura ;
Goyette, Mary ;
Gupta, Supriya ;
Moore, Jamie ;
Nguyen, Huy ;
Onofrio, Robert C. ;
Parkin, Melissa ;
Roy, Jessica ;
Stahl, Erich ;
Winchester, Ellen ;
Ziaugra, Liuda ;
Altshuler, David ;
Shen, Yan .
NATURE, 2007, 449 (7164) :851-U3
[8]   Exploration, normalization, and summaries of high density oligonucleotide array probe level data [J].
Irizarry, RA ;
Hobbs, B ;
Collin, F ;
Beazer-Barclay, YD ;
Antonellis, KJ ;
Scherf, U ;
Speed, TP .
BIOSTATISTICS, 2003, 4 (02) :249-264
[9]   Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs [J].
Korn, Joshua M. ;
Kuruvilla, Finny G. ;
McCarroll, Steven A. ;
Wysoker, Alec ;
Nemesh, James ;
Cawley, Simon ;
Hubbell, Earl ;
Veitch, Jim ;
Collins, Patrick J. ;
Darvishi, Katayoon ;
Lee, Charles ;
Nizzari, Marcia M. ;
Gabriel, Stacey B. ;
Purcell, Shaun ;
Daly, Mark J. ;
Altshuler, David .
NATURE GENETICS, 2008, 40 (10) :1253-1260
[10]   Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection [J].
Li, C ;
Wong, WH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (01) :31-36