Sensory rhodopsin II from the haloalkaliphilic Natronobacterium pharaonis:: Light-activated proton transfer reactions

被引:72
作者
Schmies, G
Lüttenberg, B
Chizhov, I
Engelhard, M
Becker, A
Bamburg, E
机构
[1] Max Planck Inst Mol Physiol, D-44227 Dortmund, Germany
[2] Max Planck Inst Biophys, D-60596 Frankfurt, Germany
关键词
D O I
10.1016/S0006-3495(00)76654-9
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In the present work the light-activated proton transfer reactions of sensory rhodopsin II from Natronobacterium pharaonis (pSRII) and those of the channel-mutants D75N-pSRII and F86D-pSRII are investigated using flash photolysis and black lipid membrane (BLM) techniques. Whereas the photocycle of the F86D-pSRII mutant is quite similar to that of the wild-type protein, the photocycle of D75N-pSRII consists of only two intermediates. The addition of external proton donors such as azide, or in the case of F86D-pSRII, imidazole, accelerates the reprotonation of the Schiff base, but not the turnover. The electrical measurements prove that pSRII and F86D-pSRII can function as outwardly directed proton pumps, whereas the mutation in the extracellular channel (D75N-pSRII) leads to an inwardly directed transient current. The almost negligible size of the photostationary current is explained by the long-lasting photocycle of about a second. Although the M decay, but not the photocycle turnover, of pSRII and F86D-pSRII is accelerated by the addition of azide, the photostationary current is considerably increased. It is discussed that in a two-photon process a late intermediate (N- and/or O-like species) is photoconverted back to the original resting state; thereby the long photocycle is cut short, giving rise to the large increase of the photostationary current. The results presented in this work indicate that the function to generate ion gradients across membranes is a general property of archaeal rhodopsins.
引用
收藏
页码:967 / 976
页数:10
相关论文
共 52 条
[1]   PHOTOCURRENTS GENERATED BY BACTERIORHODOPSIN ON PLANAR BILAYER MEMBRANES [J].
BAMBERG, E ;
APELL, HJ ;
DENCHER, NA ;
SPERLING, W ;
STIEVE, H ;
LAUGER, P .
BIOPHYSICS OF STRUCTURE AND MECHANISM, 1979, 5 (04) :277-292
[2]   Protein, lipid and water organization in bacteriorhodopsin crystals:: a molecular view of the purple membrana at 1.9 Å resolution [J].
Belrhali, H ;
Nollert, P ;
Royant, A ;
Menzel, C ;
Rosenbusch, JP ;
Landau, EM ;
Pebay-Peyroula, E .
STRUCTURE, 1999, 7 (08) :909-917
[3]   PRIMARY STRUCTURE OF SENSORY RHODOPSIN-I, A PROKARYOTIC PHOTORECEPTOR [J].
BLANCK, A ;
OESTERHELT, D ;
FERRANDO, E ;
SCHEGK, ES ;
LOTTSPEICH, F .
EMBO JOURNAL, 1989, 8 (13) :3963-3971
[4]   REMOVAL OF TRANSDUCER HTRI ALLOWS ELECTROGENIC PROTON TRANSLOCATION BY SENSORY RHODOPSIN-I [J].
BOGOMOLNI, RA ;
STOECKENIUS, W ;
SZUNDI, I ;
PEROZO, E ;
OLSON, KD ;
SPUDICH, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (21) :10188-10192
[5]   VIBRATIONAL SPECTROSCOPY OF BACTERIORHODOPSIN MUTANTS - LIGHT-DRIVEN PROTON TRANSPORT INVOLVES PROTONATION CHANGES OF ASPARTIC-ACID RESIDUE-85, RESIDUE-96, AND RESIDUE-212 [J].
BRAIMAN, MS ;
MOGI, T ;
MARTI, T ;
STERN, LJ ;
KHORANA, HG ;
ROTHSCHILD, KJ .
BIOCHEMISTRY, 1988, 27 (23) :8516-8520
[6]   Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle:: The local-access model [J].
Brown, LS ;
Dioumaev, AK ;
Needleman, R ;
Lanyi, JK .
BIOPHYSICAL JOURNAL, 1998, 75 (03) :1455-1465
[7]   The photophobic receptor from Natronobacterium pharaonis:: Temperature and pH dependencies of the photocycle of sensory rhodopsin II [J].
Chizhov, I ;
Schmies, G ;
Seidel, R ;
Sydor, JR ;
Lüttenberg, B ;
Engelhard, M .
BIOPHYSICAL JOURNAL, 1998, 75 (02) :999-1009
[8]   Spectrally silent transitions in the bacteriorhodopsin photocycle [J].
Chizhov, I ;
Chernavskii, DS ;
Engelhard, M ;
Mueller, KH ;
Zubov, BV ;
Hess, B .
BIOPHYSICAL JOURNAL, 1996, 71 (05) :2329-2345
[9]   EFFICIENT TRANSFECTION OF THE ARCHAEBACTERIUM HALOBACTERIUM-HALOBIUM [J].
CLINE, SW ;
DOOLITTLE, WF .
JOURNAL OF BACTERIOLOGY, 1987, 169 (03) :1341-1344
[10]   INCORPORATION OF BACTERIORHODOPSIN INTO A BILAYER LIPID-MEMBRANE - PHOTOELECTRIC-SPECTROSCOPIC STUDY [J].
DANCSHAZY, Z ;
KARVALY, B .
FEBS LETTERS, 1976, 72 (01) :136-138