Tg and reactivity at the nanoscale

被引:28
作者
Koh, Yung P. [1 ]
Li, Qingxiu [1 ]
Simon, Sindee L. [1 ]
机构
[1] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
Nanoconfinement; Reactivity; Glass transition temperature (Tg); Controlled pore glass; Differential scanning calorimetry (DSC); GLASS-TRANSITION TEMPERATURE; M DICYANATE ESTER; POLYMER NANOCOMPOSITES; STRUCTURAL RELAXATION; THIN-FILMS; CONFINEMENT; LIQUIDS; DYNAMICS; BEHAVIOR; COOPERATIVITY;
D O I
10.1016/j.tca.2009.06.007
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanoscale constraint is known to have a significant impact on the thermal properties of materials. In this work, differential scanning calorimetry (DSC) is used to investigate the depression in the glass transition temperature (T-g) and the reactivity of a monofunctional and of a difunctional cyanate ester Cured under nanoscale constraint. Both reactants undergo trimerization, but the former forms a small molecular-weight compound, whereas the latter forms a polycyanurate network material. A T-g depresssion is observed for both the reactants and their products; the magnitude of the depression seems to be related to the size of the molecule being confined relative to the confinement size. The trimerization reaction is accelerated relative to the bulk when the reactants are confined in nanopores. This is clearly observed by a shift in the reaction exotherms to lower temperatures for dynamic temperature scans. Quantification of the acceleration is accomplished by converting the dynamic temperature scan data to conversion versus time data assuming constant activation energy. The results are consistent with acceleration factors obtained from isothermal cure studies, but the dynamic data is considerably easier to obtain. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 50
页数:6
相关论文
共 45 条
[1]   Effects of confinement on freezing and melting [J].
Alba-Simionesco, C. ;
Coasne, B. ;
Dosseh, G. ;
Dudziak, G. ;
Gubbins, K. E. ;
Radhakrishnan, R. ;
Sliwinska-Bartkowiak, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (06) :R15-R68
[2]   Effects of confinement on material behaviour at the nanometre size scale [J].
Alcoutlabi, M ;
McKenna, GB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (15) :R461-R524
[3]   Length scale of cooperativity in the dynamic glass transition [J].
Arndt, M ;
Stannarius, R ;
Groothues, H ;
Hempel, E ;
Kremer, F .
PHYSICAL REVIEW LETTERS, 1997, 79 (11) :2077-2080
[4]   Dielectric investigations of the dynamic glass transition in nanopores [J].
Arndt, M ;
Stannarius, R ;
Gorbatschow, W ;
Kremer, F .
PHYSICAL REVIEW E, 1996, 54 (05) :5377-5390
[5]   The glass transition temperature versus the fictive temperature [J].
Badrinarayanan, Prashanth ;
Zheng, Wei ;
Li, Qingxiu ;
Simon, Sindee L. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2007, 353 (26) :2603-2612
[6]   Quantitative equivalence between polymer nanocomposites and thin polymer films [J].
Bansal, A ;
Yang, HC ;
Li, CZ ;
Cho, KW ;
Benicewicz, BC ;
Kumar, SK ;
Schadler, LS .
NATURE MATERIALS, 2005, 4 (09) :693-698
[7]   Controlling the thermornechanical properties of polymer nanocomposites by tailoring the polymer-particle interface [J].
Bansal, Amitabh ;
Yang, Hoichang ;
Li, Chunzhao ;
Benicewicz, Rian C. ;
Kumar, Sanat K. ;
Schadler, Linda S. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (20) :2944-2950
[8]   Glass transition in liquids: Two versus three-dimensional confinement [J].
Barut, G ;
Pissis, P ;
Pelster, R ;
Nimtz, G .
PHYSICAL REVIEW LETTERS, 1998, 80 (16) :3543-3546
[9]   Examination of the influence of cooperative segmental dynamics on the glass transition and coefficient of thermal expansion in thin films probed using poly(n-alkyl methacrylate)s [J].
Campbell, Casey G. ;
Vogt, Bryan D. .
POLYMER, 2007, 48 (24) :7169-7175
[10]   Confinement effects on freezing and melting [J].
Christenson, HK .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (11) :R95-R133