Aggregation and sparsity via l1 penalized least squares

被引:38
作者
Bunea, Florentina [1 ]
Tsybakov, Alexandre B.
Wegkamp, Marten H.
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 05, France
[3] Inst Informat Transmiss Problems, Moscow, Russia
来源
LEARNING THEORY, PROCEEDINGS | 2006年 / 4005卷
关键词
D O I
10.1007/11776420_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper shows that near optimal rates of aggregation and adaptation to unknown sparsity can be simultaneously achieved via, penalized least squares in a nonparametric regression setting. The main tool is a novel oracle inequality on the sum between the empirical squared loss of the penalized least squares estimate and a term reflecting the sparsity of the unknown regression function.
引用
收藏
页码:379 / 391
页数:13
相关论文
共 18 条
[1]  
BARAUD Y, 2002, ESAIM-PROBAB STAT, V7, P127
[2]   Minimum contrast estimators on sieves: exponential bounds and rates of convergence [J].
Birge, L ;
Massart, P .
BERNOULLI, 1998, 4 (03) :329-375
[3]  
BIRGE L, 2002, PREPUBLICATION U PAR, V783
[4]  
BUNEA F, 2004, CANADIAN J STAT, V22, P1
[5]  
BUNEA F, 2005, AGGREGATION GAUSSIAN
[6]  
CANDES EJ, 2005, DANTZIG SELECTOR STA
[7]  
Catoni O., 2004, LECT NOTES MATH
[8]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[9]  
Gyorfi L., 2002, DISTRIBUTION FREE TH
[10]  
Juditsky A, 2000, ANN STAT, V28, P681