RGD-functionalized bioengineered spider dragline silk biomaterial

被引:156
作者
Bini, Elisabetta
Foo, Cheryl Wong Po
Huang, Jia
Karageorgiou, Vassilis
Kitchel, Brandon
Kaplan, David L.
机构
[1] Tufts Univ, Dept Biomed Engn, Dept Chem, Bioengn & Biotechnol Ctr, Medford, MA 02155 USA
[2] Rutgers State Univ, Dept Biochem & Microbiol, New Brunswick, NJ 08901 USA
关键词
D O I
10.1021/bm0607877
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spider silk fibers have remarkable mechanical properties that suggest the component proteins could be useful biopolymers for fabricating biomaterial scaffolds for tissue formation. Two bioengineered protein variants from the consensus sequence of the major component of dragline silk from Nephila clavipes were cloned and expressed to include RGD cell-binding domains. The engineered silks were characterized by CD and FTIR and showed structural transitions from random coil to insoluble, beta-sheet upon treatment with methanol. The recombinant proteins were processed into films and fibers and successfully used as biomaterial matrixes to culture human bone marrow stromal cells induced to differentiate into bone-like tissue upon addition of osteogenic stimulants. The recombinant spider silk and the recombinant spider silk with RGD encoded into the protein both supported enhanced the differentiation of human bone marrow derived mesenchymal stem cells ( hMSCs) to osteogenic outcomes when compared to tissue culture plastic. The recombinant spider silk protein without the RGD displayed enhanced bone related outcomes, measured by calcium deposition, when compared to the same protein with RGD. Based on comparisons to our prior studies with silkworm silks and RGD modifications, the current results illustrate the potential to bioengineer spider silk proteins into new biomaterial matrixes, while also highlighting the importance of subtle differences in silk sources and modes of presentation of RGD to cells in terms of tissue-specific outcomes.
引用
收藏
页码:3139 / 3145
页数:7
相关论文
共 47 条
[1]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[2]   Cell differentiation by mechanical stress [J].
Altman, GH ;
Horan, RL ;
Martin, I ;
Farhadi, J ;
Stark, PRH ;
Volloch, V ;
Richmond, JC ;
Vunjak-Novakovic, G ;
Kaplan, DL .
FASEB JOURNAL, 2001, 15 (14) :270-+
[3]   Purification and characterization of recombinant spider silk expressed in Escherichia coli [J].
Arcidiacono, S ;
Mello, C ;
Kaplan, D ;
Cheley, S ;
Bayley, H .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1998, 49 (01) :31-38
[4]   Production and characterization of a silk-like hybrid protein, based on the polyalanine region of Samia cynthia ricini silk fibroin and a cell adhesive region derived from fibronectin [J].
Asakura, T ;
Tanaka, C ;
Yang, MY ;
Yao, JM ;
Kurokawa, M .
BIOMATERIALS, 2004, 25 (04) :617-624
[5]  
BEER JH, 1992, BLOOD, V79, P117
[6]   Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers [J].
Chen, JS ;
Altman, GH ;
Karageorgiou, V ;
Horan, R ;
Collette, A ;
Volloch, V ;
Colabro, T ;
Kaplan, DL .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 67A (02) :559-570
[7]   Synthetic spider dragline silk proteins and their production in Escherichia coli [J].
Fahnestock, SR ;
Irwin, SL .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1997, 47 (01) :23-32
[8]   Production of synthetic spider dragline silk protein in Pichia pastoris [J].
Fahnestock, SR ;
Bedzyk, LA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1997, 47 (01) :33-39
[9]  
FAHNETOCK SR, 2000, BIOTECHNOL, V74, P105
[10]  
Foo CWP, 2002, ADV DRUG DELIVER REV, V54, P1131