Degradation of and drug release from a novel 2,2-bis(2-oxazoline) linked poly(lactic acid) polymer

被引:31
作者
Tarvainen, T
Karjalainen, T
Malin, M
Pohjolainen, S
Tuominen, J
Seppälä, J
Järvinen, K
机构
[1] Univ Kuopio, Dept Pharmaceut, FIN-70211 Kuopio, Finland
[2] Helsinki Univ Technol, Lab Polymer Technol, Dept Chem Technol, Helsinki, Finland
关键词
biodegradable polymers; drug delivery; 2,2 '-bis(2-oxazoline) chain extender; poly(lactic acid); polyesteramide;
D O I
10.1016/S0168-3659(02)00081-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The degradation rate of poly(lactic acid) (PLA) is typically modified by copolymerization of the glycolide with lactide. In the present study, the degradation rate of PDLLA was modified by a novel linking of PLA with 2,2'-bis(2-oxazoline). This modification resulted in formation of a more rapidly degrading poly(ester amide) (PEA) for controlled drug release. The hydrolytic degradation of PDLLA and PEA films was studied in PBS (pH 7.4, USP XXIV, 37 C); the resulting decrease in molecular weight was determined by size exclusion chromatography and the weight loss of films was measured. Drug releases of guaifenesin (mw 198.2), timolol (mw 332.4), sodium salicylate (mw 160.1) and FITC-dextran (mw 4400) from PDLLA and PEA films and microspheres were examined in PBS (pH 7.4, 37 degreesC). The degradation rate of PEA was substantially greater than that of PDLLA. The release profiles of all small model drugs (mw <332.4) from PDLLA films were biphasic or triphasic, while the release profiles of small model drugs from PEA films varied extensively. Due to the faster weight loss of PEA, FITC-dextran (mw 4400) was released substantially more rapidly from PEA microspheres than from PDLLA microspheres. In conclusion, all model drugs, except guaifenesin, were released faster from PEA preparations than from PDLLA preparations. (C) 2002 Elsevier Science BV All rights reserved.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 33 条
[1]   Preparation and characterization of protein-loaded poly(ε-caprolactone) microparticles for oral vaccine delivery [J].
Benoit, MA ;
Baras, B ;
Gillard, J .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1999, 184 (01) :73-84
[2]   Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers:: influence of buffer media on polymer erosion and bovine serum albumin release [J].
Bittner, B ;
Witt, C ;
Mäder, K ;
Kissel, T .
JOURNAL OF CONTROLLED RELEASE, 1999, 60 (2-3) :297-309
[3]   EVALUATION OF BIODEGRADABLE POLY(LACTIDE) PELLETS PREPARED BY DIRECT COMPRESSION [J].
BODMEIER, R ;
CHEN, HG .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1989, 78 (10) :819-822
[4]   FACTORS INFLUENCING THE RELEASE OF PEPTIDES AND PROTEINS FROM BIODEGRADABLE PARENTERAL DEPOT SYSTEMS [J].
BODMER, D ;
KISSEL, T ;
TRAECHSLIN, E .
JOURNAL OF CONTROLLED RELEASE, 1992, 21 (1-3) :129-137
[5]  
BRANNONPEPPAS L, 2000, HDB PHARM CONTROLLED, P99
[6]   Branched biodegradable polyesters for parenteral drug delivery systems [J].
Breitenbach, A ;
Li, YX ;
Kissel, T .
JOURNAL OF CONTROLLED RELEASE, 2000, 64 (1-3) :167-178
[7]   THE ACCELERATION OF DEGRADATION-CONTROLLED DRUG DELIVERY FROM POLYESTER MICROSPHERES [J].
CHA, Y ;
PITT, CG .
JOURNAL OF CONTROLLED RELEASE, 1989, 8 (03) :259-265
[8]   CONTROLLED DELIVERY SYSTEMS FOR PROTEINS BASED ON POLY(LACTIC GLYCOLIC ACID) MICROSPHERES [J].
COHEN, S ;
YOSHIOKA, T ;
LUCARELLI, M ;
HWANG, LH ;
LANGER, R .
PHARMACEUTICAL RESEARCH, 1991, 8 (06) :713-720
[9]   Mechanistic aspects of the release of levamisole hydrochloride from biodegradable polymers [J].
Gallagher, KM ;
Corrigan, OI .
JOURNAL OF CONTROLLED RELEASE, 2000, 69 (02) :261-272
[10]   HYDROLYTIC DEGRADATION OF DEVICES BASED ON POLY(DL-LACTIC ACID) SIZE-DEPENDENCE [J].
GRIZZI, I ;
GARREAU, H ;
LI, S ;
VERT, M .
BIOMATERIALS, 1995, 16 (04) :305-311