Stability of the quadratic functional equation in Lipschitz spaces

被引:28
作者
Czerwik, S
Dlutek, K
机构
关键词
quadratic functional equation; stability;
D O I
10.1016/j.jmaa.2003.12.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be an Abelian group with a metric d and E a normed space. For any f : G --> E we define the quadratic difference of the function f by the formula Qf (x, y) := 2f (x) + 2f (y) - f (x + y) - f (x - y) for x, y is an element of G. Under some assumptions about f and Qf we prove that if Qf is Lipschitz, then there exists a quadratic function K : G --> E such that f - K is Lipschitz. Moreover, some results concerning the stability of the quadratic functional equation in the Lipschitz norms are presented. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 13 条
[1]  
BADORA R, 1993, ANN POL MATH, V58, P147, DOI DOI 10.4064/ap-58-2-147-159
[2]  
CZERWIK S, IN PRESS QUADRATIC D
[3]  
CZERWIK S., 2002, Functional Equations and Inequalities in Several Variables
[4]  
CZERWIK S., 2002, AEQUATIONES MATH, V63, P210
[5]  
Forti G. L., 1995, AEQUATIONES MATH, V50, P143, DOI DOI 10.1007/BF01831117
[6]  
Gajda Z., 1992, INVARIANT MEANS REPR
[7]  
GREENLEAF FB, 1969, VAN N MATH STUDIES, V16
[8]  
Hyers D. H., 1998, STABILITY FUNCTIONS
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]  
SIUDUT S., 1996, CAUCHY DIFFERNCE OPE, P25