Some Lambert series expansions of products of theta functions

被引:14
作者
Williams, KS [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ctr Res Algebra & Number Theory, Ottawa, ON K1S 5B6, Canada
关键词
theta functions; Lambert series; binary quadratic forms;
D O I
10.1023/A:1009853106329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let q be a complex number satisfying \ q \ < 1. The theta function phi(q) is defined by phi(q) = Sigma(x=-infinity)(infinity)q(x2). Ramanujan has given a number of Lambert series expansions such as [GRAPHICS] A formula is proved which includes this and other expansions as special cases.
引用
收藏
页码:367 / 384
页数:18
相关论文
共 10 条
[1]  
Berndt B. C., 1991, Ramanujan's Notebooks
[2]  
BERNDT BC, 1999, IN PRESS DEV MATH, V2
[3]  
BERNDT BC, 1994, RAMANUJANS NOTEBOO 4
[4]  
Buell D. A., 1989, BINARY QUADRATIC FOR
[5]   ON DISCRIMINANTS OF BINARY QUADRATIC FORMS WITH A SINGLE CLASS IN EACH GENUS [J].
CHOWLA, S ;
BRIGGS, WE .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (04) :463-470
[6]  
Dickson L. E., 1957, INTRO THEORY NUMBERS
[7]  
Hardy G. H., 2008, INTRO THEORY NUMBERS, Vsixth
[8]  
Huard JG, 1995, ACTA ARITH, V73, P271
[9]  
KAPLAN P, 1997, FAR E J MATH SCI, V5, P153
[10]  
RAMANUJAN S, 1957, NOTEBROOKS