Improving an operational wheat yield model using phenological phase-based Normalized Difference Vegetation Index

被引:73
作者
Boken, VK
Shaykewich, CF
机构
[1] Univ N Dakota, Dept Geog, Grand Forks, ND 58202 USA
[2] Univ Manitoba, Dept Soil Sci, Winnipeg, MB R3T 2N2, Canada
关键词
D O I
10.1080/014311602320567955
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Currently, a model (referred to as a monthly model) employing monthly temperature and precipitation data is used by the Canadian Wheat Board to estimate spring wheat yields for the Canadian Prairies. The model uses a cumulative moisture index as an explanatory variable. In this paper, the performance of the monthly model was improved by first developing a daily model by employing daily, instead of monthly, data for the 1975-1996 period and then by developing a hybrid model which incorporated into the daily model an additional variable derived from the National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR)-based composited Normalized Difference Vegetation Index (NDVI) data for the 1987-1996 period. Out of the seven variables derived, two variables-the average NDVI during the heading phenological-phase and the average NDVI during the entire growing season-were found to be the best. The start and the end of the heading phase were estimated using a biometeorological time scale model. The performance of models was tested on five crop districts (1b, 3bn, 4b, 6a, and 9a) of Saskatchewan on the basis of coefficient of determination, R-2. While using 1975-1996 data, the values for R-2 were 0.43, 0.82, 0.73, 0.71 and 0.00 in the case of the daily model as opposed to 0.20, 0.71, 0.57, 0.58, and 0.00 in the case of the monthly model for districts 1b, 3bn, 4b, 6a, and 9a, respectively. While using 1987-1996 data, the values of R 2 were 0.79, 0.96, 0.83, 0.95, and 0.39 in the case of the hybrid model as opposed to 0.13, 0.70, 0.75, 0.50, and 0.00 in the case of the monthly model for districts 1b, 3bn, 4b, 6a, and 9a, respectively. For district 9a, which experiences an adequate supply of soil moisture, the concept of cumulative soil moisture index was not found to hold welt for yield estimation.
引用
收藏
页码:4155 / 4168
页数:14
相关论文
共 19 条
[1]  
BULLOCK PR, 1992, CANADIAN J REMOTE SE, V8, P23
[2]  
*CAN GRAIN COMM, 1996, CAN GRAIN EXP CROP Y
[3]   NORMALIZED DIFFERENCE VEGETATION INDEX MEASUREMENTS FROM THE ADVANCED VERY HIGH-RESOLUTION RADIOMETER [J].
GOWARD, SN ;
MARKHAM, B ;
DYE, DG ;
DULANEY, W ;
YANG, JL .
REMOTE SENSING OF ENVIRONMENT, 1991, 35 (2-3) :257-277
[4]  
Gujarati D. N., 1995, Basic Econometrics, V3rd ed
[5]   VEGETATION INDEXES FROM AVHRR - AN UPDATE AND FUTURE-PROSPECTS [J].
GUTMAN, GG .
REMOTE SENSING OF ENVIRONMENT, 1991, 35 (2-3) :121-136
[6]   Yield estimation for corn and wheat in the Hungarian great plain using Landsat MSS data [J].
Hamar, D ;
Ferencz, C ;
Lichtenberger, J ;
Tarcsai, G ;
FerenczArkos, I .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (09) :1689-1699
[7]   PRAIRIE CROP YIELD ESTIMATES FROM MODELED PHENOLOGICAL DEVELOPMENT AND WATER-USE [J].
RADDATZ, RL ;
SHAYKEWICH, CF ;
BULLOCK, PR .
CANADIAN JOURNAL OF PLANT SCIENCE, 1994, 74 (03) :429-436
[8]  
ROBERTSON B, 1992, P ISPRS C COMM 2 WAS, P223
[9]  
ROBERTSON G W, 1968, International Journal of Biometeorology, V12, P191, DOI 10.1007/BF01553422
[10]  
ROBERTSON GW, 1968, Q AGR METEOROLOGY TE, V14