Analytical model for studying how environmental factors influence protein conformational stability in solution

被引:3
作者
Cheung, Jason K. [1 ]
Raverkar, Prajakta S.
Truskett, Thomas M.
机构
[1] Univ Texas, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas, Inst Theoret Chem, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2403134
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce an analytical modeling strategy for probing the conformational stability of globular proteins in aqueous solution. In this approach, the intrinsic (i.e., infinite dilution) thermodynamic stability and coarse structural properties of the proteins, as well as the effective protein-protein interactions, derive from a heteropolymer collapse theory that incorporates predicted temperature- and pressure-dependent hydrophobic interactions. Protein concentration effects are estimated by integrating this information into a molecular thermodynamic model, which is an ad hoc generalization of the exact equilibrium theory of a one-dimensional binary mixture of square-well particles that interconvert through an isomerization (i.e., folding) reaction. The end result is an analytical multiscale modeling approach which, although still schematic, can predict that folded proteins exhibit a closed-loop region of stability in the pressure-temperature plane and that protein concentration has a nonmonotonic effect on protein stability, results consistent with qualitative trends observed in both experiments of protein solutions and simulations of coarse-grained protein models. (c) 2006 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 50 条
[1]   RELATIONSHIP BETWEEN HARD-SPHERE FLUID AND FLUIDS WITH REALISTIC REPULSIVE FORCES [J].
ANDERSEN, HC ;
WEEKS, JD ;
CHANDLER, D .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 4 (04) :1597-+
[2]   WHAT IS LIQUID - UNDERSTANDING STATES OF MATTER [J].
BARKER, JA ;
HENDERSON, D .
REVIEWS OF MODERN PHYSICS, 1976, 48 (04) :587-671
[3]   Heteropolymer collapse theory for protein folding in the pressure-temperature plane [J].
Cheung, Jason K. ;
Shah, Pooja ;
Truskett, Thomas M. .
BIOPHYSICAL JOURNAL, 2006, 91 (07) :2427-2435
[4]   Coarse-grained strategy for modeling protein stability in concentrated solutions [J].
Cheung, JK ;
Truskett, TM .
BIOPHYSICAL JOURNAL, 2005, 89 (04) :2372-2384
[5]  
CLELAND JL, 1993, CRIT REV THER DRUG, V10, P307
[6]   New approach to stability assessment of protein solution formulations by differential scanning calorimetry [J].
Cueto, M ;
Dorta, MJ ;
Munguía, O ;
Llabrés, M .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2003, 252 (1-2) :159-166
[7]  
DILL KA, 1991, ANNU REV BIOCHEM, V60, P795, DOI 10.1146/annurev.biochem.60.1.795
[8]   THERMAL STABILITIES OF GLOBULAR-PROTEINS [J].
DILL, KA ;
ALONSO, DOV ;
HUTCHINSON, K .
BIOCHEMISTRY, 1989, 28 (13) :5439-5449
[9]   DOMINANT FORCES IN PROTEIN FOLDING [J].
DILL, KA .
BIOCHEMISTRY, 1990, 29 (31) :7133-7155
[10]   THEORY FOR THE FOLDING AND STABILITY OF GLOBULAR-PROTEINS [J].
DILL, KA .
BIOCHEMISTRY, 1985, 24 (06) :1501-1509