Reduction Fe3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition

被引:174
作者
Salah, A. Ait [1 ]
Mauger, A.
Zaghib, K.
Goodenough, J. B.
Ravet, N.
Gauthier, M.
Gendron, F.
Julien, C. M.
机构
[1] Univ Paris 06, UMR 7588, Inst Nanosci Paris, F-75015 Paris, France
[2] CNRS, Dept Math Informat Phys Planete & Univers, F-75015 Paris, France
[3] Inst Rech Hydro Quebec, Varennes, PQ J3X 1S1, Canada
[4] Univ Texas, Austin, TX 78712 USA
[5] Univ Montreal, Dept Chim, Montreal, PQ 3HC 3J7, Canada
[6] Phostech Lithium, Boucherville, PQ J4B 7K4, Canada
关键词
D O I
10.1149/1.2213527
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The structural properties of microcrystalline LiFePO4 prepared with and without carbon coating are analyzed with X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and magnetic measurements for comparison. While nanosized ferromagnetic particles (gamma-Fe2O3 clusters) are evidenced from magnetic measurements in samples without carbon coating, such ferromagnetic clusters just do not exist in the carbon-coated sample. Ferromagnetic resonance experiments are a probe of the gamma-Fe2O3 nanoparticles, and magnetization measurements as well, allowing for a quantitative estimate of the amount of Fe3+. While the fraction of iron in the Fe3+ configuration rises to 0.18% (in the form of gamma-Fe2O3 nanoparticles) in the carbon-free sample, this fraction falls to a residual impurity concentration in the carbon-coated sample. Structural properties show that the carbon does not penetrate inside the LiFePO4 particles but has been very efficient in the reduction of Fe3+, preventing the gamma-Fe2O3 clustering thus pointing out a gas phase reduction process. The carbon deposit characterized by Raman spectroscopy is an amorphous graphite deposit hydrogenated with a very small H/C ratio, with the same Raman characteristics as a-C carbon films obtained by pyrolysis technique at pyrolysis temperature 830 +/- 30 degrees C. The impact of the carbon coating on the electrochemical properties is also reported.
引用
收藏
页码:A1692 / A1701
页数:10
相关论文
共 37 条
[1]   A comparative study of magnetic properties of LiFePO4 and LiMnPO4 [J].
Arcon, D ;
Zorko, A ;
Dominko, R ;
Jaglicic, Z .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (30) :5531-5548
[2]   Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J].
Bewlay, SL ;
Konstantinov, K ;
Wang, GX ;
Dou, SX ;
Liu, HK .
MATERIALS LETTERS, 2004, 58 (11) :1788-1791
[3]  
Burma C. M., 2004, J ELECTROCHEM SOC, V151, pA1032
[4]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[5]   Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J].
Doeff, MM ;
Hu, YQ ;
McLarnon, F ;
Kostecki, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) :A207-A209
[6]   Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries [J].
Dominko, R ;
Gaberscek, M ;
Drofenik, J ;
Bele, M ;
Jamnik, J .
ELECTROCHIMICA ACTA, 2003, 48 (24) :3709-3716
[7]  
DRESSELHAUS MS, 1982, TOP APPL PHYS, V51, P3
[8]  
GEIS MW, 1993, ENCY APPL PHYSICS, V5, P1
[9]   Nano-network electronic conduction in iron and nickel olivine phosphates [J].
Herle, PS ;
Ellis, B ;
Coombs, N ;
Nazar, LF .
NATURE MATERIALS, 2004, 3 (03) :147-152
[10]   Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries [J].
Hu, YQ ;
Doeff, MM ;
Kostecki, R ;
Fiñones, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (08) :A1279-A1285