The finite volume method for Richards equation

被引:107
作者
Eymard, R
Gutnic, M
Hilhorst, D
机构
[1] Ecole Natl Ponts & Chaussees, F-77455 Marne la Vallee 2, France
[2] Univ Strasbourg 1, Inst Rech Math, F-67084 Strasbourg, France
[3] CNRS, Lab Math Anal Numer & EDP, F-91405 Orsay, France
[4] Univ Paris Sud, F-91405 Orsay, France
关键词
flow in porous media; Richards equation; finite volume methods; convergence of approximate solutions; discrete a priori estimates; Kolmogorov's theorem;
D O I
10.1023/A:1011547513583
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we prove the convergence of a finite volume scheme for the discretization of an elliptic-parabolic problem, namely Richards equation beta(P)(t) - div(K(beta(P)) x del (P + z)) = 0, together with Dirichlet boundary conditions and an initial condition. This is done by means of a priori estimates in L-2 and the use of Kolmogorov's theorem on relative compactness of subsets of L-2.
引用
收藏
页码:259 / 294
页数:36
相关论文
共 25 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]   CO-VOLUME METHODS FOR DEGENERATE PARABOLIC PROBLEMS [J].
BAUGHMAN, LA ;
WALKINGTON, NJ .
NUMERISCHE MATHEMATIK, 1993, 64 (01) :45-67
[3]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[4]   A GENERAL MASS-CONSERVATIVE NUMERICAL-SOLUTION FOR THE UNSATURATED FLOW EQUATION [J].
CELIA, MA ;
BOULOUTAS, ET ;
ZARBA, RL .
WATER RESOURCES RESEARCH, 1990, 26 (07) :1483-1496
[5]   Simulation of water flow and heat transfer in soils by means of a mixed finite element method [J].
Chounet, LM ;
Hilhorst, D ;
Jouron, C ;
Kelanemer, Y ;
Nicolas, P .
ADVANCES IN WATER RESOURCES, 1999, 22 (05) :445-460
[6]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[7]  
Ekeland I., 1974, Analyse Convexe et Problemes Variationnels
[8]  
Eymard R, 1998, RAIRO-MATH MODEL NUM, V32, P747
[9]  
Eymard R., 1998, ACTA MATH U COMENIAN, V67, P181
[10]  
EYMARD R, IN PRESS HDB NUMERIC