A structural comparison of bacterial microfossils vs. 'nanobacteria' and nanofossils

被引:42
作者
Southam, G [1 ]
Donald, R [1 ]
机构
[1] No Arizona Univ, Coll Arts & Sci, Dept Biol Sci, Flagstaff, AZ 86011 USA
关键词
bacteria; ultramicrobacteria; bacteria-metal interaction; microfossils; 'nanobacteria';
D O I
10.1016/S0012-8252(99)00057-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The formation of bacterial microfossils results from the cell surface immobilization of soluble heavy metals (biomineralization) via passive ionic interactions or by the formation and release of chemical reactive metabolic by-products. These metal-encrusted cell surfaces are resistant to re-mobilization and are typically the only component of the cell that is preserved, for possibly as long as several billion years. The size and shape of microfossils are determined by bacterial morphology, which includes spherical, rod, filamentous, vibriod, helical and stalked structures. The examination of ultra-thin sections using transmission electron microscopy (TEM) reveals that mineralized bacterial cells have the basic shape of the original cell from which they formed and appear hollow. Even in rare cases when the cell envelope and the cytoplasm are mineralized, the cell envelope can be differentiated from the cytoplasm preserving the original cell morphology. Scanning electron microscopy (SEM) cannot differentiate between geochemical and geomicrobiological mineral precipitation. The term 'nanobacteria' has been used to describe spherical or rod-shaped minerals (tens of nanometers in diameter) observed using SEM. While these minerals may represent mineralized portions of bacteria, e.g., membrane vesicles, stalks or flagella, they are too small to be bacteria. Conversely, 'nanobacteria' may simply represent solid, inorganic precipitates. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:251 / 264
页数:14
相关论文
共 119 条
[1]   CHARACTERIZATION OF EXTRACELLULAR MN-2+-OXIDIZING ACTIVITY AND ISOLATION OF AN MN-2+-OXIDIZING PROTEIN FROM LEPTOTHRIX-DISCOPHORA SS-1 [J].
ADAMS, LF ;
GHIORSE, WC .
JOURNAL OF BACTERIOLOGY, 1987, 169 (03) :1279-1285
[2]   MICROFLORA OF SOIL AS VIEWED BY TRANSMISSION ELECTRON-MICROSCOPY [J].
BAE, HC ;
CASIDA, LE ;
COTAROBL.EH .
APPLIED MICROBIOLOGY, 1972, 23 (03) :637-+
[3]   MICROORGANISMS FROM GUNFLINT CHERT - THESE STRUCTURALLY PRESERVED PRECAMBRIAN FOSSILS FROM ONTARIO ARE MOST ANCIENT ORGANISMS KNOWN [J].
BARGHOORN, ES ;
TYLER, SA .
SCIENCE, 1965, 147 (3658) :563-+
[4]   ANAEROBIC MAGNETITE PRODUCTION BY A MARINE, MAGNETOTACTIC BACTERIUM [J].
BAZYLINSKI, DA ;
FRANKEL, RB ;
JANNASCH, HW .
NATURE, 1988, 334 (6182) :518-519
[5]  
Beveridge T J, 1981, Int Rev Cytol, V72, P229, DOI 10.1016/S0074-7696(08)61198-5
[6]   THE BACTERIAL SURFACE - GENERAL-CONSIDERATIONS TOWARDS DESIGN AND FUNCTION [J].
BEVERIDGE, TJ .
CANADIAN JOURNAL OF MICROBIOLOGY, 1988, 34 (04) :363-372
[7]   SITES OF METAL-DEPOSITION IN THE CELL-WALL OF BACILLUS-SUBTILIS [J].
BEVERIDGE, TJ ;
MURRAY, RGE .
JOURNAL OF BACTERIOLOGY, 1980, 141 (02) :876-887
[8]   MAJOR SITES OF METAL-BINDING IN BACILLUS-LICHENIFORMIS WALLS [J].
BEVERIDGE, TJ ;
FORSBERG, CW ;
DOYLE, RJ .
JOURNAL OF BACTERIOLOGY, 1982, 150 (03) :1438-1448
[9]   UPTAKE AND RETENTION OF METALS BY CELL-WALLS OF BACILLUS-SUBTILIS [J].
BEVERIDGE, TJ ;
MURRAY, RGE .
JOURNAL OF BACTERIOLOGY, 1976, 127 (03) :1502-1518
[10]   METAL FIXATION BY BACTERIAL-CELL WALLS [J].
BEVERIDGE, TJ ;
FYFE, WS .
CANADIAN JOURNAL OF EARTH SCIENCES, 1985, 22 (12) :1893-1898