Density of the ratio of two normal random variables and applications

被引:77
作者
Pham-Gia, T. [1 ]
Turkkan, N.
Marchand, E.
机构
[1] Univ Moncton, Dept Math & Stat, Moncton, NB E1A 3E9, Canada
[2] Univ Moncton, Dept Civil Engn, Moncton, NB E1A 3E9, Canada
[3] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bivariate normal; finite sampling; Hermite function; integral representation; Kummer confluent hypergeometric function; normal; ratio;
D O I
10.1080/03610920600683689
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In reply to a question raised in the literature, and to settle an argument debated in the last decades, we give the exact closed form expression of the density of X\Y, where X and Y are normal random variables, in terms of Hermite and confluent hypergeometric functions. All cases will be considered: standardized and nonstandardized variables, independent or correlated variables. Examples in applied disciplines are presented, and generalizations to ratios of variables from scale mixtures of bivariate normal distributions show the potential of further new applications in applied statistics and operations research.
引用
收藏
页码:1569 / 1591
页数:23
相关论文
共 20 条
[1]  
[Anonymous], 1989, J STAT COMPUT SIMUL, DOI DOI 10.1080/00949658908811195
[2]  
BROWN KS, 2004, RATIO POPULATIONS
[3]  
Castillo E., 1989, METRIKA, V36, P209, DOI [10.1007/BF02614094, DOI 10.1007/BF02614094]
[5]   The distribution of the index in a normal bivariate population. [J].
Fieller, EC .
BIOMETRIKA, 1932, 24 :428-440
[6]   The frequency distribution of the quotient of two normal variates [J].
Geary, RC .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY, 1930, 93 :442-446
[7]  
HINKLEY DV, 1969, BIOMETRIKA, V56, P635, DOI 10.1093/biomet/56.3.635
[8]  
Kendall M., 1983, ADV THEORY STAT, V3
[9]  
Lebedev N.N., 1972, Dover Books on Math- ematics