Identification, tissue expression, and functional characterization of Otx3, a novel member of the Otx family

被引:22
作者
Zhang, Y
Miki, T
Iwanaga, T
Koseki, Y
Okuno, M
Sunaga, Y
Ozaki, N
Yano, H
Koseki, H
Seino, S [1 ]
机构
[1] Chiba Univ, Dept Cellular & Mol Med, Chiba 2608670, Japan
[2] Chiba Univ, Dept Mol Embryol, Grad Sch Med, Chiba 2608670, Japan
[3] Chiba Univ, Ctr Gene Res, Chiba 2608670, Japan
[4] Hokkaido Univ, Grad Sch Vet Med, Lab Anat, Sapporo, Hokkaido 0600818, Japan
关键词
D O I
10.1074/jbc.C100767200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcription factors containing a homeodomain play an important role in the organogenesis of vertebrates. We have isolated a novel homeodomain transcription factor, Otx3, which is structurally and functionally related to Otx1 and Otx2, transcription factors that are critical in brain morphogenesis. Mouse Otx3 is a protein composed of 376 amino acids. Otx3 mRNA was expressed in mouse embryos from 10.5 to 13.5 days postcoitum (dpc) and in adult cerebellum as assessed by Northern blotting. Whole-mount in situ hybridization of mouse embryos from 9.5 to 11.5 dpc revealed strong expression of Otx3 mRNA in the diencephalon, mesencephalon, metencephalon, myelencephalon, and developing eye, indicating an expression pattern largely overlapping but distinct from those of Otx1 and Otx2. In addition, Otx3 was shown by electrophoretic mobility shift assay to bind to the TAATCC motif, the consensus binding sequence for Otx1, Otx2, and Crx. Results of a transcription reporter assay suggest that Otx3 functions as a transcription repressor by binding to this motif. These results suggest that Otx3 is a novel member of the Otx family and may be involved in the development of the central nervous system.
引用
收藏
页码:28065 / 28069
页数:5
相关论文
共 26 条
[1]  
ACAMPORA D, 1995, DEVELOPMENT, V121, P3279
[2]  
Acampora D, 1998, DEVELOPMENT, V125, P1229
[3]   Otx genes in brain morphogenesis [J].
Acampora, D ;
Gulisano, M ;
Broccoli, V ;
Simeone, A .
PROGRESS IN NEUROBIOLOGY, 2001, 64 (01) :69-95
[4]  
Acampora D, 1997, DEVELOPMENT, V124, P3639
[5]   Epilepsy and brain abnormalities in mice lacking the Otx1 gene [J].
Acampora, D ;
Mazan, S ;
Avantaggiato, V ;
Barone, P ;
Tuorto, F ;
Lallemand, Y ;
Brulet, P ;
Simeone, A .
NATURE GENETICS, 1996, 14 (02) :218-222
[6]  
Akasaka T, 2001, DEVELOPMENT, V128, P1587
[7]   THE ROLE OF LOCALIZATION OF BICOID RNA IN ORGANIZING THE ANTERIOR PATTERN OF THE DROSOPHILA EMBRYO [J].
BERLETH, T ;
BURRI, M ;
THOMA, G ;
BOPP, D ;
RICHSTEIN, S ;
FRIGERIO, G ;
NOLL, M ;
NUSSLEINVOLHARD, C .
EMBO JOURNAL, 1988, 7 (06) :1749-1756
[8]   Functional domains of the cone-rod homeobox (CRX) transcription factor [J].
Chau, KY ;
Chen, SM ;
Zack, DJ ;
Ono, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :37264-37270
[9]   Transcribing pancreas [J].
Edlund, H .
DIABETES, 1998, 47 (12) :1817-1823
[10]   THE ORTHODENTICLE GENE ENCODES A NOVEL HOMEO DOMAIN PROTEIN INVOLVED IN THE DEVELOPMENT OF THE DROSOPHILA NERVOUS-SYSTEM AND OCELLAR VISUAL STRUCTURES [J].
FINKELSTEIN, R ;
SMOUSE, D ;
CAPACI, TM ;
SPRADLING, AC ;
PERRIMON, N .
GENES & DEVELOPMENT, 1990, 4 (09) :1516-1527